Skip to main content
Log in

Enhanced Resveratrol Production in Vitis vinifera Cell Suspension Cultures by Heavy Metals Without Loss of Cell Viability

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of heavy metal ions (Co2+, Ag+, Cd2+) on cell viability and secondary metabolite production, particularly anthocyanins and phenolic acids in Vitis vinifera cell suspension cultures, were investigated. Of these, Co at all three used concentrations (5.0, 25, and 50 μM), Ag, and Cd at low concentration (5.0 μM) were most effective to stimulate the phenolic acid production, increasing the 3-O-glucosyl-resveratrol up to 1.6-fold of the control level (250.5 versus 152.4 μmol/g), 4 h after the treatments. Meanwhile, the elicitors at effective concentrations did not suppress cell growth, while the cell viability maintained. In contrast, Ag and Cd at high concentrations (25 and 50 μM) remarkably reduced the cell viability, decreasing the cell viability up to about 15 % of the control level, 24 h after the treatments. The heavy metal ions did not affect the anthocyanin production. These observations show how, in a single system, different groups of secondary products can show distinct differences in their responses to potential elicitors. The 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, peroxidase activity, medium pH value, and conductivity were only slightly elevated by the heavy metal ions. The results suggest that some of the secondary metabolites production was stimulated by the used elicitors, but there was not a stress response of the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hanchinal, V. M., Survase, S. A., Sawant, S. K., & Annapure, U. S. (2008). Plant Cell, Tissue and Organ Culture, 93, 123–132.

    Article  CAS  Google Scholar 

  2. Krolicka, A., Szpitter, A., Stawujak, K., Baranski, R., Gwizdek-Wisniewska, A., Skrzypczak, A., et al. (2010). Plant Cell, Tissue and Organ Culture, 103, 285–292.

    Article  CAS  Google Scholar 

  3. Fu, C. X., Cheng, L. Q., Lv, X. F., Zhao, D. X., & Ma, F. S. (2006). Applied Biochemistry and Biotechnology, 134, 89–96.

    Article  CAS  Google Scholar 

  4. Gandi, S., Rao, K., Chodisetti, B., & Giri, A. (2012). Applied Biochemistry and Biotechnology, 168, 1729–1738.

    Article  CAS  Google Scholar 

  5. Shumakova, O. A., Manyakhin, A. Y., & Kiselev, K. V. (2011). Applied Biochemistry and Biotechnology, 165, 1427–1436.

    Article  CAS  Google Scholar 

  6. Maksymiec, W. (2007). Acta Physiologiae Plantarum, 29, 177–187.

    Article  CAS  Google Scholar 

  7. Zhang, C. H., Yan, Q., Cheuk, W. K., & Wu, J. Y. (2004). Planta Medica, 70, 147–151.

    Article  CAS  Google Scholar 

  8. Zhao, J. L., Zhou, L. G., & Wu, J. Y. (2010). Applied Microbiology and Biotechnology, 87, 137–144.

    Article  CAS  Google Scholar 

  9. Ge, X., & Wu, J. (2005). Plant Science, 168, 487–491.

    Article  CAS  Google Scholar 

  10. Khosroushahi, A. Y., Valizadeh, M., Ghasempour, A., Khosrowshahli, M., Naghdibadi, H., Dadpour, M. R., et al. (2006). Cell Biology International, 30, 262–269.

    Article  CAS  Google Scholar 

  11. Furze, J. M., Rhodes, M. J. C., Parr, A. J., Robins, R. J., Withehead, I. M., & Threlfall, D. R. (1991). Plant Cell Reports, 10, 111–114.

    Article  CAS  Google Scholar 

  12. Murch, S. J., Haq, K., Rupasinghe, H. P. V., & Saxena, P. K. (2003). Environmental and Experimental Botany, 49, 251–257.

    Article  CAS  Google Scholar 

  13. Cai, Z., Knorr, D., & Smetanska, I. (2012). Enzyme and Microbial Technology, 50, 29–34.

    Article  CAS  Google Scholar 

  14. Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Experimental Cell Research, 50, 151–158.

    Article  CAS  Google Scholar 

  15. Towill, L. E., & Mazur, P. (1975). Canadian Journal of Botany, 53, 1097–1102.

    Article  Google Scholar 

  16. Mewis, I., Smetanska, I., Müller, C., & Ulrichs, C. (2011). Applied Biochemistry and Biotechnology, 164, 148–161.

    Article  CAS  Google Scholar 

  17. Mohdaly, A. A. A., Sarhan, M. A., Smetanska, I., & Mahmoud, A. (2010). Journal of the Science of Food and Agriculture, 90, 218–226.

    Article  CAS  Google Scholar 

  18. Kombrink, E., & Somssich, I. E. (1995). Advances in Botanical Research, 21, 1–34.

    Article  CAS  Google Scholar 

  19. Yesil-Celiktas, O., Nartop, P., Gurel, A., Bedir, E., & Vardar-Sukan, F. (2007). Journal of Plant Physiology, 164, 1536–1542.

    Article  CAS  Google Scholar 

  20. Bowles, D. J. (1990). Annual Review of Biochemistry, 59, 873–907.

    Article  CAS  Google Scholar 

  21. Kwak, S.-S., Kim, S.-K., Park, I.-H., & Liu, J. R. (1996). Phytochemistry, 43, 565–568.

    Article  CAS  Google Scholar 

  22. Do, C. B., & Cormier, F. (1991). Plant Cell, Tissue and Organ Culture, 24, 49–54.

    Article  CAS  Google Scholar 

  23. Cai, Z., Riedel, H., Thaw Saw, N., Kütük, O., Mewis, I., Jäger, H., et al. (2011). Applied Biochemistry and Biotechnology, 164, 443–453.

    Article  CAS  Google Scholar 

  24. Cai, Z., Riedel, H., Saw, N. M. M. T., Mewis, I., Reineke, K., Knorr, D., et al. (2011). Process Biochemistry, 46, 1411–1416.

    Article  CAS  Google Scholar 

  25. Chakraborty, M., Karun, A., & Mitra, A. (2009). Journal of Plant Physiology, 166, 63–71.

    Article  CAS  Google Scholar 

  26. Sircar, D., & Mitra, A. (2008). Journal of Plant Physiology, 165, 407–414.

    Article  CAS  Google Scholar 

  27. Gadzovska, S., Maury, S., Delaunay, A., Spasenoski, M., Joseph, C., & Hagege, D. (2007). Plant Cell, Tissue and Organ Culture, 89, 1–13.

    Article  CAS  Google Scholar 

  28. van der Plas, L. H. W., Eijkelboom, C., & Hagendoorn, M. J. M. (1995). Plant Cell, Tissue and Organ Culture, 43, 111–116.

    Article  Google Scholar 

  29. Ferrat, L., Pergent-Martini, C., & Romeo, M. (2003). Aquatic Toxicology, 65, 187–204.

    Article  CAS  Google Scholar 

  30. Baque, M. A., Lee, E. J., & Paek, K. Y. (2010). Plant Cell Reports, 29, 685–694.

    Article  Google Scholar 

  31. Cui, X. H., Murthy, H. N., Wu, C. H., & Paek, K. Y. (2010). Plant Cell, Tissue and Organ Culture, 103, 7–14.

    Article  CAS  Google Scholar 

  32. Yamaguchi, T., Fujita, K., & Sakai, K. (1999). Journal of Wood Science, 45, 170–173.

    Article  CAS  Google Scholar 

  33. Messner, B., & Boll, M. (1993). Plant Cell, Tissue and Organ Culture, 34, 261–269.

    Article  CAS  Google Scholar 

  34. Meloni, D. A., Oliva, M. A., Martinez, C. A., & Cambraia, J. (2003). Environmental and Experimental Botany, 49, 69–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Prof. Dietrich Knorr from Technical University Berlin for supporting this work. We also thank Irene Hemmerich from Technical University Berlin for providing V. vinifera cell culture and the continuous cultivation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenzhen Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, Z., Kastell, A., Speiser, C. et al. Enhanced Resveratrol Production in Vitis vinifera Cell Suspension Cultures by Heavy Metals Without Loss of Cell Viability. Appl Biochem Biotechnol 171, 330–340 (2013). https://doi.org/10.1007/s12010-013-0354-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0354-4

Keywords

Navigation