Skip to main content
Log in

Comparative metabolomic analysis on industrial continuous and batch ethanol fermentation processes by GC-TOF-MS

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

The intracellular metabolic profile characterization of Saccharomyces cerevisiae throughout industrial ethanol fermentation was investigated using gas chromatography coupled to time-of-flight mass spectrometry. A total of 143 and 128 intracellular metabolites in S. cerevisiae were detected and quantified in continuous and batch fermentations, respectively. The two fermentation processes were both clearly distinguished into three main phases by principal components analysis. Furthermore, the levels of some metabolites involved in central carbon metabolism varied significantly throughout both processes. Glycerol and phosphoric acid were principally responsible for discriminating seed, main and final phases of continuous fermentation, while lactic acid and glycerol contributed mostly to telling different phases of batch fermentation. In addition, the levels of some amino acids such as glycine varied significantly during both processes. These findings provide new insights into the metabolomic characteristics during industrial ethanol fermentation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrams, R., Hammarsten, E., & Shemin, D. (1948). Glycine as a precursor of purines in yeast. The Journal of Biological Chemistry, 173, 429.

    PubMed  CAS  Google Scholar 

  • Backhus, L. E., DeRisi, J. P. O., & Bisson, L. F. (2001). Functional genomic analysis of a commercial wine strain of Saccharomyces cerevisiae under differing nitrogen conditions. FEMS Yeast Research, 1, 111–125. doi:10.1111/j.1567-1364.2001.tb00022.x.

    Article  PubMed  CAS  Google Scholar 

  • Blomberg, A., & Adler, L. (1989). Roles of glycerol and glycerol-3-phosphate dehydrogenase (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae. Journal of Bacteriology, 171, 1087–1092.

    PubMed  CAS  Google Scholar 

  • Blomberg, A., & Adler, L. (1992). Physiology of osmotolerance in fungi. Advances in Microbial Physiology, 33, 145–212. doi:10.1016/S0065-2911(08)60217-9.

    Article  PubMed  CAS  Google Scholar 

  • Brejning, J., Arneborg, N., & Jespersen, L. (2005). Identification of genes and proteins induced during the lag and early exponential phase of lager brewing yeasts. Journal of Applied Microbiology, 98, 261–271. doi:10.1111/j.1365-2672.2004.02472.x.

    Article  PubMed  CAS  Google Scholar 

  • Brewster, J. L., De Valoir, T., Dwyer, N. D., Winter, E., & Gustin, M. C. (1993). An osmosensing signal transduction pathway in yeast. Science, 259, 1760–1763. doi:10.1126/science.7681220.

    Article  PubMed  CAS  Google Scholar 

  • Cavalieri, D., Townsend, J. P., & Hartl, D. L. (2000). Manifold anomalies in gene expression in a vineyard isolate of Saccharomyces cerevisiae revealed by DNA microarray analysis. Proceedings of the National Academy of Sciences of the United States of America, 97, 12369–12374. doi:10.1073/pnas.210395297.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, J. S., Qiao, B., & Yuan, Y. J. (2008). Comparative proteome analysis of robust Saccharomyces cerevisiae insights into industrial continuous and batch fermentation. Applied Microbiology and Biotechnology, 81, 327–338. doi:10.1007/s00253-008-1733-6.

    Google Scholar 

  • Davenport, K. R., Sohaskey, M., Kamada, Y., Levin, D. E., & Gustin, M. C. (1995). A second osmosensing signal transduction pathway in yeast: Hypotonic shock activates the PKC1 protein kinase-regulated cell integrity pathway. The Journal of Biological Chemistry, 270, 30157–30161. doi:10.1074/jbc.270.50.30157.

    Article  PubMed  CAS  Google Scholar 

  • Devantier, R., Scheithauer, B., Villas-Bôas, S. G., Pedersen, S., & Olsson, L. (2005). Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations. Biotechnology and Bioengineering, 90, 703–714. doi:10.1002/bit.20457.

    Article  PubMed  CAS  Google Scholar 

  • Dickinson, J. R., & Scheweizer, M. (1999). Stress responses in the metabolism and molecular physiology of Saccharomyces cerevisiae (p. 343). New York: Taylor and Francis.

    Google Scholar 

  • Fiehn, O. (2002). Metabolomics—the link between genotypes and phenotypes. Plant Molecular Biology, 48, 155–171. doi:10.1023/A:1013713905833.

    Article  PubMed  CAS  Google Scholar 

  • Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L. (2000). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18, 1157–1161. doi:10.1038/81137.

    Article  PubMed  CAS  Google Scholar 

  • Franzen, C. J. (2003). Metabolic flux analysis of RQ-controlled microaerobic ethanol production by Saccharomyces cerevisiae. Yeast (Chichester, England), 20, 117–132. doi:10.1002/yea.956.

    Article  CAS  Google Scholar 

  • Gancedo, C., Gancedo, J. M., & Sols, A. (1968). Glycerol metabolism in yeasts Pathways of utilization and production. European Journal of Biochemistry, 5, 165–172. doi:10.1111/j.1432-1033.1968.tb00353.x.

    Article  PubMed  CAS  Google Scholar 

  • Gika, H. G., Theodoridis, G. A., & Wilson, I. D. (2008). Liquid chromatography and ultra-performance liquid chromatography–mass spectrometry fingerprinting of human urine: Sample stability under different handling and storage conditions for metabonomics studies. Journal of Chromatography A, 1189, 314–322. doi:10.1016/j.chroma.2007.10.066.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, R., Pearson, S. Y., Brosnan, J. M., Meaden, P. G., & Jamieson, D. J. (2006). Proteomic analysis of a distilling strain of Saccharomyces cerevisiae during industrial grain fermentation. Applied Microbiology and Biotechnology, 72, 116–125. doi:10.1007/s00253-006-0508-1.

    Article  PubMed  CAS  Google Scholar 

  • Hohl, L. A., & Joslyn, M. A. (1941). Lactic acid formation in alcoholic fermentation by yeast. Plant Physiology, 16, 343–360.

    Article  PubMed  CAS  Google Scholar 

  • Hohmann, S. (2002). Osmotic stress signaling and osmoadaptation in yeasts. Microbiology and Molecular Biology Reviews, 66, 300–372. doi:10.1128/MMBR.66.2.300-372.2002.

    Article  PubMed  CAS  Google Scholar 

  • James, T. C., Campbell, S., Donnelly, D., & Bond, U. (2003). Transcription profile of brewery yeast under fermentation conditions. Journal of Applied Microbiology, 94, 432–448. doi:10.1046/j.1365-2672.2003.01849.x.

    Article  PubMed  CAS  Google Scholar 

  • Kamada, Y., Jung, U. S., Piotrowski, J., & Levin, D. E. (1995). The protein kinase C-activated MAP kinase pathway in Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes & Development, 9, 1559–1571. doi:10.1101/gad.9.13.1559.

    Article  CAS  Google Scholar 

  • Kell, B., & Westerhoff, H. V. (1986). Metabolic control theory: Its role in microbiology and biotechnology. FEMS Microbiology Letters, 39, 305–320. doi:10.1111/j.1574-6968.1986.tb01863.x.

    Article  CAS  Google Scholar 

  • Kobi, D., Zugmeyer, S., Potier, S., & Jaquet-Gutfreund, L. (2004). Two dimensional protein map of an “ale”-brewing yeast strain: Proteome dynamics during fermentation. FEMS Yeast Research, 5, 213–230. doi:10.1016/j.femsyr.2004.07.004.

    Article  PubMed  CAS  Google Scholar 

  • Koning, W., & Van Dam, K. (1992). A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Analytical Biochemistry, 204, 118–123. doi:10.1016/0003-2697(92)90149-2.

    Article  PubMed  Google Scholar 

  • Krebs, H. A., Lowenstein, J. M., & Greenberg, D. M. (1960). Metabolic pathways (Vol. 1, p. 129). New York/London: Academic Press.

    Google Scholar 

  • Lenz, E., & Wilson, I. D. (2007). Analytical strategies in metabonomics. Journal of Proteome Research, 6, 443. doi:10.1021/pr0605217.

    Article  PubMed  CAS  Google Scholar 

  • Major, H. J., Williams, R., Wilson, A. J., & Wilson, I. D. (2006). A metabonomic analysis of plasma from Zucker rat strains using gas chromatography/mass spectrometry and pattern recognition. Rapid Communications in Mass Spectrometry, 20, 3295–3302. doi:10.1002/rcm.2732.

    Article  PubMed  CAS  Google Scholar 

  • Marks, V. D., Ho Sui, S. J., Erasmus, D., Van der Merwe, G. K., et al. (2008). Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation stress response. FEMS Yeast Research, 8, 35–52.

    PubMed  CAS  Google Scholar 

  • Mohler, R. E., Tu, B. P., Dombek, K. M., Hoggard, J. C., Young, E. T., & Synovec, R. E. (2008). Identification and evaluation of cycling yeast metabolites in two-dimensional comprehensive gas chromatography-time-of-flight-mass spectrometry data. Journal of Chromatography A, 1186, 401–411. doi:10.1016/j.chroma.2007.10.063.

    Article  PubMed  CAS  Google Scholar 

  • Nissen, T. L., Schulze, U., Nielsen, J., & Villadsen, J. (1997). Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology, 143, 203–218.

    PubMed  CAS  Google Scholar 

  • Ossipov, V., Ossipova, S., Bykov, V., Oksanen, E., Koricheva, J., & Haukioja, E. (2008). Application of metabolomics to genotype and phenotype discrimination of birch trees grown in a long-term open-field experiment. Metabolomics, 4, 39–51. doi:10.1007/s11306-007-0097-8.

    Article  CAS  Google Scholar 

  • Pham, T. K., Chong, P. K., Gan, C. S., & Wright, P. C. (2006). Proteomic analysis of Saccharomyces cerevisiae under high gravity fermentation conditions. Journal of Proteome Research, 5, 3411–3419. doi:10.1021/pr060377p.

    Article  PubMed  CAS  Google Scholar 

  • Roessner, U., Luedemann, A., Brust, D., et al. (2001). Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. The Plant Cell, 13, 11–29.

    Article  PubMed  CAS  Google Scholar 

  • Roessner, U., Wagner, C., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000). Simultaneous analysis of metabolites in potato tuber by gas chromatography–mass spectrometry. The Plant Journal, 23, 131–142. doi:10.1046/j.1365-313x.2000.00774.x.

    Article  PubMed  CAS  Google Scholar 

  • Trabalzini, L., Paffetti, A., Scaloni, A., et al. (2003). Proteomic response to physiological fermentation stresses in a wild-type wine strain of Saccharomyces cerevisiae. The Biochemical Journal, 370, 35–46. doi:10.1042/BJ20020140.

    Article  PubMed  CAS  Google Scholar 

  • Van Dijken, J. P., & Scheffers, W. A. (1986). Redox balances in the metabolism of sugars by yeast. FEMS Microbiology Reviews, 32, 199–224.

    Google Scholar 

  • Villas-Bôas, S. G., Delicado, D. G., Akesson, M., & Nielsen, J. (2003). Simultaneous analysis of amino and nonamino organic acids as methyl chloroformate derivatives using gas chromatography–mass spectrometry. Analytical Biochemistry, 322, 134–138. doi:10.1016/j.ab.2003.07.018.

    Article  PubMed  CAS  Google Scholar 

  • Villas-Bôas, S. G., Moxley, J. F., Akesson, M., Stephanopoulos, G., & Nielsen, J. (2005). High-throughput metabolic state analysis: The missing link in integrated functional genomics of yeasts. The Biochemical Journal, 388, 669–677. doi:10.1042/BJ20041162.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, C., Sefkow, M., & Kopka, J. (2003). Construction and application of a mass spectral and retention time index database generated from GC/EI-TOF-MS metabolite profiles. Phytochemistry, 62, 887–900. doi:10.1016/S0031-9422(02)00703-3.

    Article  PubMed  CAS  Google Scholar 

  • Wiebe, M. G., Rintala, E., Tamminen, A., et al. (2008). Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. FEMS Yeast Research, 8, 140–154.

    Article  PubMed  CAS  Google Scholar 

  • Yang, W. L., & Bernards, M. A. (2007). Metabolite profiling of potato (Solanum tuberosum L.) tubers during wound-induced suberization. Metabolomics, 3, 147–159. doi:10.1007/s11306-007-0053-7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the National Natural Science Foundation of China (Key Program Grant No.20736006), the National Basic Research Program of China (Program: 2007CB714301), and Key Projects in the National Science & Technology Pillar Program (No.2007BAD42B02), and the National Natural Science Foundation of China (No. 20706044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Jin Yuan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MOESM1 (DOC 61 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, MZ., Cheng, JS., Xiao, WH. et al. Comparative metabolomic analysis on industrial continuous and batch ethanol fermentation processes by GC-TOF-MS. Metabolomics 5, 229–238 (2009). https://doi.org/10.1007/s11306-008-0145-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-008-0145-z

Keywords

Navigation