Skip to main content
Log in

Cross-Linked Enzyme Aggregates of Phenylalanine Ammonia Lyase: Novel Biocatalysts for Synthesis of L-Phenylalanine

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cross-linked enzyme aggregates of phenylalanine ammonia lyase (PAL-CLEAs) from Rhodotorula glutinis were prepared. The effects of the type of aggregating agent, its concentration, and that of cross-linking agent were studied. PAL-CLEAs production was most effective using ammonium sulfate (40 % saturation), followed by cross-linking for 1 h with 0.2 % (v/v) glutaraldehyde. Moreover, the storage and operational stability of the resulting PAL-CLEAs were also investigated. Compared to the free enzyme, the PAL-CLEAs exhibited the expected increased stability of the enzyme against various deactivating conditions such as pH, temperature, denaturants, and organic solvents and showed higher storage stability than its soluble counterpart. Additionally, the reusability of PAL-CLEAs with respect to the biotransformation of l-phenylalanine was evaluated. PAL-CLEAs could be recycled at least for 12 consecutive batch reactions without dramatic activity loss, which should dramatically increase the commercial potential of PAL for synthesis of l-phenylalanine. To the best of our knowledge, this is the first report of immobilization of PAL as cross-linked enzyme aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aytar, B. S., & Bakir, U. (2008). Process Biochemistry, 43, 125–131.

    Article  CAS  Google Scholar 

  2. Mateo, C., Palomo, J. M., Langen, L. M., van-Rantwijk, F., & Sheldon, R. A. (2004). Biotechnology and Bioengineering, 15, 273–276.

    Article  Google Scholar 

  3. Sheldon, R. A. (2007). Biochemical Society Transactions, 35, 1583–1587.

    Article  CAS  Google Scholar 

  4. Cabana, H., Jones, J. P., & Agathos, S. N. (2007). Journal of Biotechnology, 132, 23–31.

    Article  CAS  Google Scholar 

  5. Gupta, P., Dutt, K., Misra, S., Raghuwanshi, S., & Saxena, R. K. (2009). Bioresource Technology, 100, 4074–4076.

    Article  CAS  Google Scholar 

  6. Kaul, P., Stolz, A., & Banerjee, U. C. (2007). Advanced Synthesis and Catalysis, 349, 2167–2176.

    Article  CAS  Google Scholar 

  7. Fiske, M. J., & Kane, J. F. (1984). Journal of Bacteriology, 160, 676–681.

    CAS  Google Scholar 

  8. D’ Cunha, G. B. (2005). Enzyme and Microbial Technology, 36, 498–502.

    Article  Google Scholar 

  9. Rosler, J., Krekel, F., & Amrhein, N. (1997). Plant Physiology, 113, 175–179.

    Article  CAS  Google Scholar 

  10. Yue, H. Y., Yuan, Q. P., & Wang, W. Ch. (2007). Biochemical Engineering Journal, 37, 231–237.

    Article  CAS  Google Scholar 

  11. Leng, Y., Zheng, P., & Sun, Zh. H. (2006). Process Biochemistry, 41, 1669–1672.

    Article  CAS  Google Scholar 

  12. Serpil, T., Bulent, A., & Tuncer, H. O. (1995). Enzyme and Microbial Technology, 17, 445–542.

    Article  Google Scholar 

  13. D’ Cunha, G. B., Satyanarayan, V., & Nair, P. M. (1996). Enzyme and Microbial Technology, 19, 421–427.

    Article  Google Scholar 

  14. Batal, A. I. E. (2002). Acta Microbiologica Polonica, 51, 139–152.

    Google Scholar 

  15. Zhang, B. Zh., & Cui, J. D. (2010). Journal of Agricultural and Food Chemistry, 58, 2795–2800.

    Article  CAS  Google Scholar 

  16. Nakamichi, K., Yamada, N. S., & Chibata, I. (1983). European Journal of Applied Microbiology and Biotechnology, 18, 158–162.

    Article  CAS  Google Scholar 

  17. Cui, J. D., Jia, S. R., & Sun, A. Y. (2008). Letters in Applied Microbiology, 46, 631–635.

    Article  CAS  Google Scholar 

  18. Orndorff, S. A., Costantino, N., & Stewart, D. (1988). Applied and Environmental Microbiology, 54, 996–1002.

    CAS  Google Scholar 

  19. Shah, S., Sharma, A., & Gupta, M. N. (2006). Analytical Biochemistry, 351, 207–213.

    Article  CAS  Google Scholar 

  20. Xu, D. Y., Yang, Y., & Yang, Zh. (2011). Journal of Biotechnology, 152, 30–36.

    Article  CAS  Google Scholar 

  21. Hormigo, D., Garcia-Hidalgo, J., Acebal, C., De La Mata, I., & Arroyo, M. (2011). Bioresource Technology, doi:10.1016/j.biortech.2011.09.035.

  22. Rees, D. G., & Jones, D. H. (1996). Enzyme and Microbial Technology, 19, 282–288.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was partially supported by the National Natural Science Foundation of China (NSFC, Project No. 21072041), Open Funding Project of the National Key Laboratory of Biochemical Engineering (no. KF2010-12) and the Foundation (no. GYWSW02) of Tianjin Key Laboratory of Industrial Microbiology (Tianjin University of Science and Technology), People’s Republic of China, Natural Science Foundation of Hebei University of Science and Technology (NO. XL201149), and Foundation of Hebei University of Science and Technology for Distinguished Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Dong Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, JD., Zhang, S. & Sun, LM. Cross-Linked Enzyme Aggregates of Phenylalanine Ammonia Lyase: Novel Biocatalysts for Synthesis of L-Phenylalanine. Appl Biochem Biotechnol 167, 835–844 (2012). https://doi.org/10.1007/s12010-012-9738-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9738-0

Keywords

Navigation