Skip to main content
Log in

Optimization of a Natural Medium for Cellulase by a Marine Aspergillus niger Using Response Surface Methodology

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The components of a natural medium were optimized to produce cellulase from a marine Aspergillus niger under solid state fermentation conditions by response surface methodology. Eichhornia crassipes and natural seawater were used as a major substrate and a source of mineral salts, respectively. Mineral salts of natural seawater could increase cellulase production. Raw corn cob and raw rice straw showed a significant positive effect on cellulase production. The optimum natural medium consisted of 76.9 % E. crassipes (w/w), 8.9 % raw corn cob (w/w), 3.5 % raw rice straw (w/w), 10.7 % raw wheat bran (w/w), and natural seawater (2.33 times the weight of the dry substrates). Incubation for 96 h in the natural medium increased the biomass to the maximum. The cellulase production was 17.80 U/g the dry weight of substrates after incubation for 144 h. The natural medium avoided supplying chemicals and pretreating substrates. It is promising for future practical fermentation of environment-friendly producing cellulase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adsul, M. G., Bastawde, K. B., Varma, A. J., & Gokhale, D. V. (2007). Strain improvement of Penicillium janthinellum NCIM 1171 for increased cellulase production. Bioresource Technology, 98, 1467–1473.

    Article  CAS  Google Scholar 

  2. Kaur, J., Chadha, B. S., Kumar, B. A., & Saini, H. S. (2007). Purification and characterization of two endoglucanases from Melanocarpus sp. MTCC 3922. Bioresource Technology, 98, 74–81.

    Article  CAS  Google Scholar 

  3. Berlin, A., Gilkes, N., Kilburn, D., Maximenko, V., Burra, R., Markov, A., Skomarovsky, A., Gusakov, A., Sintsyn, A., Okunev, O., Soiloveena, I., & Saddleri, J. (2006). Evaluation of cellulase preparation for hydrolysis of hardwood substrates. Applied Biochemistry and Biotechnology, 129, 528–545.

    Article  Google Scholar 

  4. Herculano, N. P., Porto, S. T., Moreira, K. A., Pinto, G. A. S., Souza-Motta, C. M., & Porto, L. F. (2011). Cellulase production by Aspergillus japonicus URM5620 using waste from castor bean (Ricinus communis L.) under solid-state fermentation. Applied Biochemistry and Biotechnology, 165, 1057–1067.

    Article  CAS  Google Scholar 

  5. Hsu, T. A. (1996). Pretreatment of biomass. In C. E. Wyman (Ed.), Handbook on bioethanol: Production and utilization (pp. 179–212). Washington: Taylor & Francis.

    Google Scholar 

  6. Alam, Z., Qudsieh, M. A. A., Muyibi, I. Y., Salleh, S. A., & Omar, H. M. N. M. (2009). Solid state bioconversion of oil palm empty fruit bunches for cellulase enzyme production using a rotary drum bioreactor. Biochemical Engineering Journal, 46, 61–64.

    Article  CAS  Google Scholar 

  7. Singh, R., Kumar, R., Bishnoi, K., & Bishnoi, N. R. (2009). Optimization of synergistic parameters for thermostable cellulase activity of Apergillus heteromorphus using response surface methodology. Biochemical Engineering Journal, 48, 28–35.

    Article  CAS  Google Scholar 

  8. Chu, J. J., Ding, Y., & Zhang, Q. (2006). Invasion and control of water hyacinth (Eichhornia crassipes) in China. Journal of Zhejiang University. Science. B, 7, 623–626.

    Article  Google Scholar 

  9. Bo, M. J., Kong, X. F., & Yin, Y. L. (2009). Comparative study on nutritional ingredients and in vitro fermentation characteristics in various parts of water hyacinth, Natural production research and development. Nature Production Research and Development, 21, 40–45.

    Google Scholar 

  10. Goering, H. K., & Van Soest, P. J. (1970). Forage fiber analyses (apparatus, reagents, procedures and some applications). Washington: US Agricultural Research Service.

    Google Scholar 

  11. Wutzke, K. D., & Heine, W. A. (1985). A century of Kjeldahl nitrogen determination. Zeitschrift für Medizinische Laboratoriumsdiagnostik, 26, 383–388.

    CAS  Google Scholar 

  12. Xue, D. S., Chen, H. Y., Ren, Y. R., & Yao, S. J. (2012). Enhancing the activity and thermostability of thermostable β-glucosidase from a marine Aspergillus niger at high salinity. Process Biochemistry, 47, 606–611.

    Article  CAS  Google Scholar 

  13. Adney, B., & Baker, J. (1996). Measurement of cellulase activities. LAP-006 NREL laboratory analytical procedure. Golden: National Renewable Energy Laboratory.

    Google Scholar 

  14. Miller, G. L. (1959). Use of dinitrosalicylic as reagent for the determination of reducing sugars. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  15. Zheng, Z., & Shetty, K. (1998). Solid state production of beneficial fungi on apple processing wastes using glucosamine as the indicator of growth. Agriculture and Food Chemistry, 46, 83–87.

    Google Scholar 

  16. Aalbæk, T., Reeslev, M., Jensen, B., Susanne, H., & Eriksen, S. H. (2002). Acid protease and formation of multiple forms of glucoamylase in batch and continuous cultures of Aspergillus niger. Enzyme and Microbial Technology, 30, 410–415.

    Article  Google Scholar 

  17. O’Donnell, D., Wang, L., Xu, J., Ridgway, D., Tingyue, G., & Moo-Young, M. (2001). Enhanced heterologous protein production in Aspergillus niger through pH control of extracellular protease activity. Biochemical Engineering Journal, 8, 187–193.

    Article  Google Scholar 

  18. Hanif, A., Yasmeen, A., & Rajoka, M. I. (2004). Induction, production, repression, and de-repression of exoglucanase synthesis in Aspergillus niger. Bioresource Technology, 94, 311–319.

    Article  CAS  Google Scholar 

  19. Suto, M., & Tomita, F. (2001). Induction and catabolite repression mechanisms of cellulase in fungi. Journal of Bioscience and Bioengeering, 92, 305–311.

    CAS  Google Scholar 

  20. Kang, S. W., Park, Y. S., Lee, J. S., Hong, S. I., & Kim, S. W. (2004). Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic. Biomass Bioresource Technology, 91, 153–156.

    Article  CAS  Google Scholar 

  21. Trivedi, N., Gupta, V., Kumar, M., Kumari, P., Reddy, C. R. K., & Bhavanath, J. B. (2011). Solvent tolerant marine bacterium Bacillus aquimaris secreting organic solvent stable alkaline cellulase. Chemosphere, 83, 706–712.

    Article  CAS  Google Scholar 

  22. Zhang, L., & Chi, Z. M. (2007). Screening and identification of a cellulase producing marine yeast and optimization of medium and cultivation conditions for cellulase production. Journal of Ocean University of China, 37, 101–108.

    CAS  Google Scholar 

  23. Gohel, V., Chaudhary, T., Vyas, P., & Chhatpar, H. S. (2006). Statistical screenings of medium components for the production of chitinase by the marine isolate Pantoea dispersa. Biochemical Engineering Journal, 28, 50–56.

    Article  CAS  Google Scholar 

  24. Lo, C. M., Zhang, Q., Callow, N. V., & Ju, L. W. (2010). Cellulase production by continuous culture of Trichoderma reesei Rut C30 using acid hydrolysate prepared to retain more oligosaccharides for induction. Bioresource Technology, 101, 717–723.

    Article  CAS  Google Scholar 

  25. Latifian, M., Hamidi-Esfahani, Z., & Mohsen Barzegar, M. (2007). Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Bioresource Technology, 98, 3634–3637.

    Article  CAS  Google Scholar 

  26. Singhania, R. R., Sukumaran, R. K., & Pandey, A. (2007). Improved cellulase production by Trichoderma reesei RUT C30 under SSF through process. Applied Biochemistry and Biotechnology, 42, 60–70.

    Article  Google Scholar 

  27. Liu, Y. T., Luo, Z. Y., Long, C. N., Wang, H. D., Long, M. N., & Hu, Z. (2011). Cellulase production in a new mutant strain of Penicillium decumbens ML-017 by solid state fermentation with rice bran. New Biotechnology, 98, 74–81.

    Google Scholar 

  28. Alama, M. Z., Mamuna, A. A., Qudsieha, I. Y., & Muyibi, S. A. (2009). Solid state bioconversion of oil palm empty fruit bunches for cellulase enzyme production using a rotary drum bioreactor. Biochemical Engineering Journal, 46, 61–64.

    Article  Google Scholar 

  29. Xia, L. M., & Shen, X. L. (2004). High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue. Bioresource Technology, 91, 259–262.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan-Jing Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, DS., Chen, HY., Lin, DQ. et al. Optimization of a Natural Medium for Cellulase by a Marine Aspergillus niger Using Response Surface Methodology. Appl Biochem Biotechnol 167, 1963–1972 (2012). https://doi.org/10.1007/s12010-012-9734-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9734-4

Keywords

Navigation