Skip to main content
Log in

Application of response surface methodology (RSM) for optimizing biomass production in Nannochloropsis oculata UTEX 2164

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Since the last few decennia microalgal biomass is of industrial significance for achieving sustainable biofuels pharmaceuticals, nutraceuticals, and functional foods. However, the major bottleneck that needs to be addressed for achieving sustainability is the low biomass productivity of microalgae. In this context, we employed a statistical approach, response surface methodology (RSM), for medium optimization to enhance the biomass of the marine strain Nannochloropsis oculata UTEX 2164 since N. oculata has good growth rate and lipid content along with other biochemical constituents. We investigated the role of macronutrients such as nitrogen (NaNO3—sodium nitrate as the source), phosphorus (NaH2PO4—monosodium phosphate as the source), and carbon (NaHCO3—sodium bicarbonate as the source) in F/2 medium as major factors that obviously control biomass production. The medium optimization was undertaken first to enhance algal biomass and the preliminary data analysis accounted for these quantifiable variables using the one-factor-at-a-time (OFAT) method with varying nitrogen, phosphorus, and carbon concentrations predicting their effect on the overall biomass yield. These findings were refined for the RSM-based experiments using a central composite design (CCD) and later evaluated to demonstrate the combined effect of nitrogen (N) and phosphorous (P) interactions by measuring biomass yields. Our data demonstrate that after nine days of culture with a 21.08 mg L−1 of N-NO3 concentration, the maximum biomass concentration achieved was 576 mg L−1, compared to 460 mg L−1 in the control. Overall, the employed statistical modeling achieved 25% DCW more biomass concentration than the control, with a coefficient of variance (CV) of 8.22%. Thus this study paves the way to further utilize this alga or the refined medium composition to acquire higher cell biomass in other algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article. The raw data in the present study are available from the corresponding author on reasonable request.

References

  • Adams C, Godfrey V, Wahlen B, Seefeldt L, Bugbee B (2013) Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae. Bioresour Technol 131:188–194

    Article  CAS  PubMed  Google Scholar 

  • Ahmad I, Yuzir A, Mohamad SE, Iwamoto K, Abdullah N (2021) Role of microalgae in sustainable energy and environment. IOP Conf Ser: Mater Sci Eng 1051:012059

    Article  CAS  Google Scholar 

  • Ananthi V, Raja R, Carvalho IS, Brindhadevi K, Pugazhendhi A, Arun A (2021) A realistic scenario on microalgae based biodiesel production: Third generation biofuel. Fuel 284:118965

    Article  CAS  Google Scholar 

  • Arora S, Cohen N, Hazan E (2018) On the optimization of deep networks: Implicit acceleration by overparameterization. Proceedings of the 35th International Conference on Machine Learning, Proceedings of Machine Learning Research, PMLR 80:244–253

  • Bajwa K, Bishnoi NR, Kirrolia A, Gupta S, Tamil Selvan S (2019) Response surface methodology as a statistical tool for optimization of physio-biochemical cellular components of microalgae Chlorella pyrenoidosa for biodiesel production. Appl Water Sci 9:128

    Article  CAS  Google Scholar 

  • Banerjee A, Maiti SK, Guria C, Banerjee C (2017) Metabolic pathways for lipid synthesis under nitrogen stress in Chlamydomonas and Nannochloropsis. Biotech Lett 39:1–11

    Article  CAS  Google Scholar 

  • Banerjee A, Guria C, Maiti SK, Banerjee C, Shukla P (2019) Carbon bio-fixation, effect of physicochemical factors and carbon supply strategies by Nannochloropsis sp. using flue gas and fertilizer. Biomass Bioenergy 125:95–104

    Article  CAS  Google Scholar 

  • Banerjee S, Ray A, Das D (2021) Optimization of Chlamydomonas reinhardtii cultivation with simultaneous CO2 sequestration and biofuels production in a biorefinery framework. Sci Total Environ 762:143080

    Article  CAS  PubMed  Google Scholar 

  • Bartley ML, Boeing WJ, Daniel D, Dungan BN, Schaub T (2016) Optimization of environmental parameters for Nannochloropsis salina growth and lipid content using the response surface method and invading organisms. J Appl Phycol 28:15–24

    Article  CAS  Google Scholar 

  • Baş D, Boyacı İH (2007) Modeling and optimization I: Usability of response surface methodology. J Food Eng 78:836–845

    Article  CAS  Google Scholar 

  • Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977

    Article  CAS  PubMed  Google Scholar 

  • Bhatia L, Bachheti RK, Garlapati VK, Chandel AK (2020) Third-generation biorefineries: a sustainable platform for food, clean energy, and nutraceuticals production. Biomass Conv Bioref

  • Borowitzka MA, Moheimani NR (2013) Sustainable biofuels from algae. Mitig Adapt Strateg Glob Change 18:13–25

    Article  Google Scholar 

  • Box GEP, Wilson KB (1992) On the experimental attainment of optimum conditions. In: Kotz S, Johnson NL (eds) Breakthroughs in statistics: methodology and distribution. Springer, New York, pp 270–310

    Chapter  Google Scholar 

  • Cakmak T, Angun P, Demiray YE, Ozkan AD, Elibol Z, Tekinay T (2012) Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnol Bioeng 109:1947–1957

    Article  CAS  PubMed  Google Scholar 

  • Cecchin M, Berteotti S, Paltrinieri S, Vigliante I, Iadarola B, Giovannone B, Maffei ME, Delledonne M, Ballottari M (2020) Improved lipid productivity in Nannochloropsis gaditana in nitrogen-replete conditions by selection of pale green mutants. Biotechnol Biofuels 13:78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zhang L, Xu C, Vaidyanathan S (2016) Dissolved inorganic carbon speciation in aquatic environments and its application to monitor algal carbon uptake. Sci Total Environ 541:1282–1295

    Article  CAS  PubMed  Google Scholar 

  • Cheng-Wu Z, Zmora O, Kopel R, Richmond A (2001) An industrial-size flat plate glass reactor for mass production of Nannochloropsis sp. (Eustigmatophyceae). Aquaculture 195:35–49

    Article  CAS  Google Scholar 

  • Chu F-J, Wan T-J, Pai T-Y, Lin H-W, Liu S-H, Huang C-F (2020) Use of magnetic fields and nitrate concentration to optimize the growth and lipid yield of Nannochloropsis oculata. J Environ Manage 253:109680

    Article  CAS  PubMed  Google Scholar 

  • da Silva Ferreira V, Sant’Anna C (2017) Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World J Microbiol Biotechnol 33:20

    Article  PubMed  CAS  Google Scholar 

  • Dean AP, Sigee DC, Estrada B, Pittman JK (2010) Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresour Technol 101:4499–4507

    Article  CAS  PubMed  Google Scholar 

  • Del Campo JA, Moreno J, Rodríguez H, Vargas MA, Rivas J, Guerrero MG (2000) Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol 76:51–59

    Article  PubMed  Google Scholar 

  • El-Mekkawi SA, Hussein HS, El-Enin SAA, El-Ibiari NN (2019) Assessment of stress conditions for carotenoids accumulation in Chlamydomonas reinhardtii as added-value algal products. Bull Natl Res Cent 43:130

    Article  Google Scholar 

  • Fallon M, Walton AJ, Newsam MI, Gaston GJ (1995) A comparison of Taguchi methods and response surface methodology for optimising a CMOS process. In: IEE Colloquium on Improving the Efficiency of IC Manufacturing Technology, pp 8/1–8/4.

  • Fazeli Danesh A, Ebrahimi S, Salehi A, Parsa A (2017) Impact of nutrient starvation on intracellular biochemicals and calorific value of mixed microalgae. Biochem Eng J 125:56–64

    Article  CAS  Google Scholar 

  • Ferreira VS, Pinto RF, Sant’Anna C (2016) Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus. J Appl Microbiol 120:661–670

    Article  CAS  PubMed  Google Scholar 

  • Gauthier MR, Senhorinho GNA, Scott JA (2020) Microalgae under environmental stress as a source of antioxidants. Algal Res 52:102104

    Article  Google Scholar 

  • Giordano M, Beardall J, Raven J (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    Article  CAS  PubMed  Google Scholar 

  • Gong Y, Yue P, Li K, Mohammat A, Liu Y (2021) Different responses of ecosystem CO2 and N2O emissions and CH4 uptake to seasonally asymmetric warming in an alpine grassland of the Tianshan. Biogeosciences 18:3529–3537

    Article  CAS  Google Scholar 

  • González-Vega RI, Cárdenas-López JL, López-Elías JA, Ruiz-Cruz S, Reyes-Díaz A, Perez-Perez LM, Cinco-Moroyoqui FJ, Robles-Zepeda RE, Borboa-Flores J, Del-Toro-Sánchez CL (2021) Optimization of growing conditions for pigments production from microalga Navicula incerta using response surface methodology and its antioxidant capacity. Saudi J Biol Sci 28:1401–1416

    Article  PubMed  CAS  Google Scholar 

  • Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Humphrey AM (1980) Chlorophyll. Food Chem 5:57–67

    Article  CAS  Google Scholar 

  • Ito A, Reyer CPO, Gädeke A, Ciais P, Chang J, Chen M, François L, Forrest M, Hickler T, Ostberg S, Shi H, Thiery W, Tian H (2020) Pronounced and unavoidable impacts of low-end global warming on northern high-latitude land ecosystems. Environ Res Lett 15:044006

    Article  Google Scholar 

  • Jacob A, Ashok B, Alagumalai A, Chyuan OH, Le PTK (2021) Critical review on third generation micro algae biodiesel production and its feasibility as future bioenergy for IC engine applications. Energy Convers Manag 228:113655

    Article  CAS  Google Scholar 

  • Jaiswal KK, Banerjee I, Singh D, Sajwan P, Chhetri V (2020) Ecological stress stimulus to improve microalgae biofuel generation: a review. Octa J Biosci 8:48–54

    CAS  Google Scholar 

  • Jerez CG, Malapascua JR, Sergejevová M, Figueroa FL, Masojídek J (2016) Effect of nutrient starvation under high irradiance on lipid and starch accumulation in Chlorella fusca (Chlorophyta). Mar Biotechnol 18:24–36

    Article  CAS  Google Scholar 

  • Kasiri S, Abdulsalam S, Ulrich A, Prasad V (2015) Optimization of CO2 fixation by Chlorella kessleri using response surface methodology. Chem Eng Sci 127:31–39

    Article  CAS  Google Scholar 

  • Kim SH, Liu KH, Lee SY, Hong SJ, Cho BK, Lee H, Lee CG, Choi HK (2013) Effects of light intensity and nitrogen starvation on glycerolipid, glycerophospholipid, and carotenoid composition in Dunaliella tertiolecta culture. PLoS ONE 8:e72415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Lee J-Y, Lu T (2014) Effects of dissolved inorganic carbon and mixing on autotrophic growth of Chlorella vulgaris. Biochem Eng J 82:34–40

    Article  CAS  Google Scholar 

  • Kirrolia A, Bishnoi NR, Singh R (2014) Response surface methodology as a decision-making tool for optimization of culture conditions of green microalgae Chlorella spp. for biodiesel production. Ann Microbiol 64:1133–1147

    Article  CAS  Google Scholar 

  • Kumaran J, Poulose S, Joseph V, Bright Singh IS (2021) Enhanced biomass production and proximate composition of marine microalga Nannochloropsis oceanica by optimization of medium composition and culture conditions using response surface methodology. Anim Feed Sci Technol 271:114761

    Article  CAS  Google Scholar 

  • Kusmayadi A, Leong YK, Yen H-W, Huang C-Y, Chang J-S (2021) Microalgae as sustainable food and feed sources for animals and humans - biotechnological and environmental aspects. Chemosphere 271:129800

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Xu H, Han F, Mu J, Chen D, Feng B, Zeng H (2015) Regulation of lipid metabolism in the green microalga Chlorella protothecoides by heterotrophy-photoinduction cultivation regime. Bioresour Technol 192:781–791

    Article  CAS  PubMed  Google Scholar 

  • Li X, Li W, Zhai J, Wei H, Wang Q (2019) Effect of ammonium nitrogen on microalgal growth, biochemical composition and photosynthetic performance in mixotrophic cultivation. Bioresour Technol 273:368–376

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Zhai Y, Xu D, Ye N, Zhang X, Wang Y, Zhang W, Yu J (2015) Correlation between lipid and carotenoid synthesis and photosynthetic capacity in Haematococcus pluvialis grown under high light and nitrogen deprivation stress. Grasas Aceites 66:e077

    Article  CAS  Google Scholar 

  • Li-Beisson Y, Beisson F, Riekhof W (2015) Metabolism of acyl-lipids in Chlamydomonas reinhardtii. Plant J 82:504–522

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

    Article  CAS  Google Scholar 

  • Liu T, Li Y, Liu F, Wang C (2016) The enhanced lipid accumulation in oleaginous microalga by the potential continuous nitrogen-limitation (CNL) strategy. Bioresour Technol 203:150–159

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Song Y, Qiu W (2017) Oleaginous microalgae Nannochloropsis as a new model for biofuel production: review & analysis. Renew Sust Energ Rev 72:154–162

    Article  CAS  Google Scholar 

  • Lu W, Liu S, Lin Z, Lin M (2021) Enhanced microalgae growth for biodiesel production and nutrients removal in raw swine wastewater by carbon sources supplementation. Waste Biomass Valor 12:1991–1999

    Article  CAS  Google Scholar 

  • Lv JM, Cheng LH, Xu XH, Zhang L, Chen HL (2010) Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour Technol 101:6797–6804

    Article  CAS  PubMed  Google Scholar 

  • Malik Z, Rashid K (2000) Comparison of optimization by response surface methodology with neurofuzzy methods. IEEE Trans Magn 36:241–257

    Article  Google Scholar 

  • Maneechote W, Cheirsilp B (2021) Stepwise-incremental physicochemical factors induced acclimation and tolerance in oleaginous microalgae to crucial outdoor stresses and improved properties as biodiesel feedstocks. Bioresour Technol 328:124850

    Article  CAS  PubMed  Google Scholar 

  • Marudhupandi T, Sathishkumar R, Kumar TT (2016) Heterotrophic cultivation of Nannochloropsis salina for enhancing biomass and lipid production. Biotechnol Rep 10:8–16

    Article  Google Scholar 

  • Millán-Oropeza A, Torres-Bustillos LG, Fernández-Linares L (2015) Simultaneous effect of nitrate (NO3-) concentration, carbon dioxide (CO2) supply and nitrogen limitation on biomass, lipids, carbohydrates and proteins accumulation in Nannochloropsis oculata. Biofuel Res J 2:215–221

    Article  Google Scholar 

  • Mirkovic T, Ostroumov EE, Anna JM, van Grondelle R, Govindjee SGD (2017) Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem Rev 117:249–293

    Article  CAS  PubMed  Google Scholar 

  • Mishra J, Yadav RK, Singhai AK (2014) Effect of granite dust on engineering properties of lime stabilized black cotton soil. Int J Eng Res Technol 3:832–837

    Google Scholar 

  • Mulders KJM, Janssen JH, Martens DE, Wijffels RH, Lamers PP (2014) Effect of biomass concentration on secondary carotenoids and triacylglycerol (TAG) accumulation in nitrogen-depleted Chlorella zofingiensis. Algal Res 6:8–16

    Article  Google Scholar 

  • Murphy DJ (2001) The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40:325–438

    Article  CAS  PubMed  Google Scholar 

  • Najjar YSH, Abu-Shamleh A (2020) Harvesting of microalgae by centrifugation for biodiesel production: a review. Algal Res 51:102046

    Article  Google Scholar 

  • Nayak M, Suh WI, Lee B, Chang YK (2018) Enhanced carbon utilization efficiency and FAME production of Chlorella sp. HS2 through combined supplementation of bicarbonate and carbon dioxide. Energy Convers Manag 156:45–52

    Article  CAS  Google Scholar 

  • Onay A (2020) Optimization of lipid content of Nannochloropsis gaditana via quadratic models using Matlab Simulink. Energy Rep 6:128–133

    Article  Google Scholar 

  • Rajak U, Nashine P, Dasore A, Balijepalli R, Kumar Chaurasiya P, Nath Verma T (2022) Numerical analysis of performance and emission behavior of CI engine fueled with microalgae biodiesel blend. Mater Today: Proc 49:301–306

    CAS  Google Scholar 

  • Rebolloso-Fuentes MM, Navarro-Pérez A, García-Camacho F, Ramos-Miras JJ, Guil-Guerrero JL (2001) Biomass nutrient profiles of the microalga Nannochloropsis. J Agric Food Chem 49:2966–2972

    Article  CAS  PubMed  Google Scholar 

  • Ritchie RJ (2008) Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica 46:115–126

    Article  CAS  Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430–436

    Article  CAS  PubMed  Google Scholar 

  • Santos-Ballardo DU, Rossi S, Hernández V, Gómez RV, del Carmen R-U, Caro-Corrales J, Valdez-Ortiz A (2015) A simple spectrophotometric method for biomass measurement of important microalgae species in aquaculture. Aquaculture 448:87–92

    Article  CAS  Google Scholar 

  • Shaikh KM, Nesamma AA, Abdin MZ, Jutur PP (2019) Molecular profiling of an oleaginous trebouxiophycean alga Parachlorella kessleri subjected to nutrient deprivation for enhanced biofuel production. Biotechnol Biofuels 12:182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553

    Article  CAS  Google Scholar 

  • Shi Y, Liu M, Ding W, Liu J (2020) Novel insights into phosphorus deprivation boosted lipid synthesis in the marine alga Nannochloropsis oceanica without compromising biomass production. J Agric Food Chem 68:11488–11502

    Article  CAS  PubMed  Google Scholar 

  • Skjånes K, Rebours C, Lindblad P (2013) Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol 33:172–215

    Article  PubMed  CAS  Google Scholar 

  • Song D, Xi B, Sun J (2016) Characterization of the growth, chlorophyll content and lipid accumulation in a marine microalgae Dunaliella tertiolecta under different nitrogen to phosphorus ratios. J Ocean Univ China 15:124–130

    Article  CAS  Google Scholar 

  • Suen Y, Hubbard JS, Holzer G, Tornabene TG (1987) Total lipid production of the green alga Nannochloropsis sp. Qii under different nitrogen regimes. J Phycol 23:289–296

    Article  CAS  Google Scholar 

  • Sui Y, Jiang Y, Moretti M, Vlaeminck SE (2020) Harvesting time and biomass composition affect the economics of microalgae production. J Clean Prod 259:120782

    Article  Google Scholar 

  • Tsiaka T, Zoumpoulakis P, Sinanoglou VJ, Makris C, Heropoulos GA, Calokerinos AC (2015) Response surface methodology toward the optimization of high-energy carotenoid extraction from Aristeus antennatus shrimp. Anal Chim Acta 877:100–110

    Article  CAS  PubMed  Google Scholar 

  • Urreta I, Ikaran Z, Janices I, Ibañez E, Castro-Puyana M, Castañón S, Suárez-Alvarez S (2014) Revalorization of Neochloris oleoabundans biomass as source of biodiesel by concurrent production of lipids and carotenoids. Algal Res 5:16–22

    Article  Google Scholar 

  • Vanaja K, Shobha Rani RH (2007) Design of experiments: concept and applications of Plackett-Burman design. Clin Res Regul Aff 24:1–23

    Article  Google Scholar 

  • Ventura SPM, Silva FAE, Quental MV, Mondal D, Freire MG, Coutinho JAP (2017) Ionic-liquid-mediated extraction and separation processes for bioactive compounds: past, present, and future trends. Chem Rev 117:6984–7052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Gao B, Wu M, Huang L, Zhang C (2019) A novel strategy for the hyper-production of astaxanthin from the newly isolated microalga Haematococcus pluvialis JNU35. Algal Res 39:101466

    Article  Google Scholar 

  • Wen ZY, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21:273–294

    Article  CAS  PubMed  Google Scholar 

  • White DA, Pagarette A, Rooks P, Ali ST (2012) The effect of sodium bicarbonate supplementation on growth and biochemical composition of marine microalgae cultures. J Appl Phycol 25:153–165

    Article  CAS  Google Scholar 

  • Wichuk K, Brynjólfsson S, Fu W (2014) Biotechnological production of value-added carotenoids from microalgae: emerging technology and prospects. Bioengineered 5:204–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu L, Xu L, Hu C (2015) Screening and characterization of oleaginous microalgal species from northern Xinjiang. J Microbiol Biotechnol 25:910–917

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  CAS  PubMed  Google Scholar 

  • Yaakob MA, Mohamed R, Al-Gheethi A, Aswathnarayana Gokare R, Ambati RR (2021) Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: an overview. Cells 10:393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarrinmehr MJ, Farhadian O, Heyrati FP, Keramat J, Koutra E, Kornaros M, Daneshvar E (2020) Effect of nitrogen concentration on the growth rate and biochemical composition of the microalga, Isochrysis galbana. Egypt J Aquat Res 46:153–158

    Article  Google Scholar 

  • Zhu L (2015) Microalgal culture strategies for biofuel production: a review. Biofuels Bioprod Bioref 9:801–814

    Article  CAS  Google Scholar 

  • Zittelli GC, Rodolfi L, Tredici MR (2003) Mass cultivation of Nannochloropsis sp. in annular reactors. J Appl Phycol 15:107–114

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the Department of Biotechnology (BT/PB/Center/03/2011-Phase II), Ministry of Science and Technology, Government of India (GoI), New Delhi, India. Senior Research Fellowship for AM supported from Council of Scientific & Industrial Research (CSIR), New Delhi, India, is duly acknowledged (09/512(0232)/2017-EMR-I).

Author information

Authors and Affiliations

Authors

Contributions

Anju Mehra: Conceptualization, Analysis, and Writing—Original Draft; Pannaga Pavan Jutur: Conceptualization, Funding acquisition, Supervision, Project administration, Writing—review & editing.

Corresponding author

Correspondence to Pannaga Pavan Jutur.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehra, A., Jutur, P.P. Application of response surface methodology (RSM) for optimizing biomass production in Nannochloropsis oculata UTEX 2164. J Appl Phycol 34, 1893–1907 (2022). https://doi.org/10.1007/s10811-022-02774-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-022-02774-3

Keyword

Navigation