Skip to main content
Log in

Improved Ethanol and Reduced Xylitol Production from Glucose and Xylose Mixtures by the Mutant Strain of Candida shehatae ATCC 22984

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A mutant Cs3512, which showed better fermentation of xylose and the mixtures of xylose and glucose, was obtained through mutation of Candida shehatae ATCC 22984 and screening with a medium containing antimycin A and TTC (2,3,5-triphenyltetrazolium chloride). Cs3512 produced 44.4 g/l of ethanol from 121.3 g/l of xylose, which was 13% higher than that by ATCC 22984. At the same time, xylitol production was reduced by 38% to 10.2 g/l from 16.3 g/l by ATCC 22984. Cs3512 also showed 8% increase in ethanol yield from 0.39 to 0.42 g/g comparing to ATCC 22984 when fermenting the sugar mixture composed of 52.9 g/l glucose and 21.2 g/l xylose. When Cs3512 was used in the simultaneous saccharification and fermentation of lime pretreated rice straw via CaCCO (calcium capturing by carbonation) process, it produced ethanol at 77% of the theoretical yield. The results imply that Cs3512 is a potential non-recombinant yeast strain for ethanol production from lignocellulosic biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Margeot, A., Hahn-Hägerdal, B., Edlund, M., Slade, R., & Monot, F. (2009). Current Opinion in Biotechnology, 20, 372–380.

    Article  CAS  Google Scholar 

  2. Fu, N., & Peiris, P. (2008). World Journal of Microbiology and Biotechnology, 24, 1091–1097.

    Article  CAS  Google Scholar 

  3. Choi, G., Um, H., Kim, Y., Kang, H., Kim, M., Chung, B., & Kim, Y. (2010). Biomass and Bioenergy, 34, 1223–1231.

    Article  CAS  Google Scholar 

  4. Oberoi, H. S., Babbar, N., Sandhu, S. K., Dhaliwal, S. S., Kaur, U., Chadha, B. S., & Bhargav, V. K. (2011). Journal of Industrial Microbiology and. Biotechnology. doi:10.1007/s10295-011-1060-2.

  5. Huang, C., Lin, T., Guo, G., & Hwang, W. (2009). Bioresource Technology, 100, 3914–3920.

    Article  CAS  Google Scholar 

  6. Li, Y., Zhang, Z., Lei, Z., Yang, Y., Utsumi, M., & Sugiura, N. (2009). Journal of Industrial Microbiology and Biotechnology, 36, 491–497.

    Article  CAS  Google Scholar 

  7. Galbe, M., & Zacchi, G. (2002). Applied Microbiology and Biotechnology, 59, 618–628.

    Article  CAS  Google Scholar 

  8. Kastner, J. R., Jones, W. J., & Roberts, R. S. (1999). Journal of Industrial Microbiology and Biotechnology, 22, 65–70.

    Article  CAS  Google Scholar 

  9. Dröge, M., Pühler, A., & Selbitschka, W. (1998). Journal of Biotechnology, 64, 75–90.

    Article  Google Scholar 

  10. Watanabe, T., Watanabe, I., Yamamoto, M., Ando, A., & Nakamura, T. (2011). Bioresource Technology, 102, 1844–1848.

    Article  CAS  Google Scholar 

  11. Sreenath, H. K., & Jeffries, T. W. (1999). Applied Biochemistry and Biotechnology, 77, 211–222.

    Article  Google Scholar 

  12. Qiaoqing, S., & Songgang, W. (2003). Industrial microbial breeding science. Beijing: Science.

    Google Scholar 

  13. Chmielewska, J., & Dziuba, E. (2003). Electronic Journal of Polish Agricultural Universities, 6, e2–e6.

    Google Scholar 

  14. Grabek-Lejko, D., Ryabova, O. B., Oklejewicz, B., Voronovsky, A. Y., & Sibirny, A. A. (2006). Journal of Industrial Microbiology and Biotechnology, 33, 934–940.

    Article  CAS  Google Scholar 

  15. Sánchez, S., Bravo, V., Castro, E., Moya, A. J., & Camacho, F. (2002). Journal of Chemical Technology and Biotechnology, 77, 641–648.

    Article  Google Scholar 

  16. Du Preez, J. C., & Van der Walt, J. P. (1983). Biotechnology Letters, 5, 357–362.

    Article  Google Scholar 

  17. Palnitkar, S. S., & Lachke, A. H. (1990). Applied Biochemistry and Biotechnology, 26, 151–158.

    Article  CAS  Google Scholar 

  18. Park, J. Y., Shiroma, R., Al-Haq, M. I., Zhang, Y., Ike, M., Arai-Sanoh, Y., Ida, A., Kondo, M., & Tokuyasu, K. (2010). Bioresource Technology, 101, 6805–6811.

    Article  CAS  Google Scholar 

  19. Dong, B., Chen, Y., Yue, R., & Xiao, D. (2008). Liquor-Making Science and Technology, 10, 40–43.

    Article  Google Scholar 

  20. Park, J. Y., Seyama, T., Shiroma, R., Ike, M., Srichuwong, S., Nagata, K., Arai-Sanoh, Y., Kondo, M., & Tokuyasu, K. (2009). Bioscience Biotechnology and Biochemistry, 73, 1072–1077.

    Article  CAS  Google Scholar 

  21. Du Preez, J. C., Bosch, M., & Prior, B. A. (1987). Applied Microbiology and Biotechnology, 25, 521–525.

    Article  Google Scholar 

  22. Fromanger, R., Guillouet, S. E., Uribelarrea, J. L., Molina-Jouve, C., & Cameleyre, X. (2010). Journal of Industrial Microbiology and Biotechnology, 37, 437–445.

    Article  CAS  Google Scholar 

  23. Medina, V. G., Almering, M. J. H., van Maris, A. J. A., & Pronk, J. T. (2010). Applied and Environmental Microbiology, 76, 190–195.

    Article  CAS  Google Scholar 

  24. Sánchez, S., Bravo, V., Castro, E., Moya, A. J., & Camacho, F. (1997). Enzyme and Microbial Technology, 21, 355–360.

    Article  Google Scholar 

  25. Veiga, A., Arrabaça, J. D., & Loureiro-Dias, M. C. (2003). FEMS Yeast Research, 3, 239–245.

    Article  CAS  Google Scholar 

  26. Butcher, R. G. (1978). Histochemistry and Cell Biology, 56, 329–340.

    Article  CAS  Google Scholar 

  27. Rich, P. R., Mischis, L. A., Purton, S., & Wiskich, J. T. (2001). FEMS Microbiology Letters, 202, 181–187.

    Article  CAS  Google Scholar 

  28. Du Preez, J. C., Van Driessel, B., & Prior, B. A. (1989). Biotechnology Letters, 11, 131–136.

    Article  Google Scholar 

  29. Lebeau, T., Jouenne, T., & Junter, G. A. (2007). Microbiological Research, 162, 211–218.

    Article  CAS  Google Scholar 

  30. Kastner, J. R., & Roberts, R. S. (1990). Biotechnology Letters, 12, 57–60.

    Article  CAS  Google Scholar 

  31. Kastner, J. R., Ahmad, M., Jones, W. J., & Roberts, R. S. (1992). Biotechnology and Bioengineering, 40, 1282–1285.

    Article  CAS  Google Scholar 

  32. Duff, S. J. B., & Murray, W. D. (1996). Bioresource Technology, 55, 1–33.

    Article  CAS  Google Scholar 

  33. Karimi, K., Emtiazi, G., & Taherzadeh, M. J. (2006). Enzyme and Microbial Technology, 40, 138–144.

    Article  CAS  Google Scholar 

  34. Bertilsson, M., Olofsson, K., & Lidén, G. (2009). Biotechnology for Biofuels, 2, 10–1186.

    Article  Google Scholar 

  35. Punnapayak, H., & Emert, G. H. (1986). Biotechnology Letters, 8, 63–66.

    Article  CAS  Google Scholar 

  36. Oberoi, H. S., Vadlani, P. V., Brijwani, K., Bhargav, V. K., & Patil, R. T. (2010). Process Biochemistry, 45, 1299–1306.

    Article  CAS  Google Scholar 

  37. Zhu, S., Wu, Y., Yu, Z., Zhang, X., Wang, C., Yu, F., Jin, S., Zhao, Y., Tu, S., & Xue, Y. (2005). Biosystems Engineering, 92, 229–235.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by a grant from the Ministry of Agriculture, Forestry, and Fisheries of Japan (Rural Biomass Research Project, BEC-BA220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Tokuyasu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Park, Jy., Shiroma, R. et al. Improved Ethanol and Reduced Xylitol Production from Glucose and Xylose Mixtures by the Mutant Strain of Candida shehatae ATCC 22984. Appl Biochem Biotechnol 166, 1781–1790 (2012). https://doi.org/10.1007/s12010-012-9586-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9586-y

Keywords

Navigation