Skip to main content
Log in

Plate ethanol-screening assay for selection of the Pichia stipitis and Hansenula polymorpha yeast mutants with altered capability for xylose alcoholic fermentation

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

A new method for the selection of Pichia stipitis and Hansenula polymorpha yeast mutants with altered capability to ferment xylose to ethanol was developed. The method is based on the ability of P. stipitis and H. polymorpha colonies to grow and produce ethanol on agar plates with xylose as the sole carbon and energy source. Secreted ethanol, in contrast to xylose, supports growth of cells of the indicator xylose-negative strains (the wild-type strain of Saccharomyces cerevisiae or Δxyl1 mutant of H. polymorpha) mixed with agar medium. The size of the tester culture-growth zone around xylose-grown colonies appeared to be dependent on the amount of secreted ethanol. Mutants with altered (decreased or elevated) ethanol production in xylose medium have been isolated using this method. The mutants exhibited pleiotropic alterations in enzymatic activities of the intermediary xylose metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aristidou A, Penttila M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11:187–198

    Article  CAS  Google Scholar 

  2. Banerjee S, Fraenkel DG (1972) Glucose-6-phosphate dehydrogenase from Escherichia coli and from a “high-level” mutant. J Bacteriol 110:156–160

    Google Scholar 

  3. Bergmeyer H-U, Gawehn K, Grassl M (1974) Enzymes as biochemical reagents. In: Bergmeyer H-U (eds) Methods of enzymatic analysis. Academic, New York 1:428–429

  4. van Dijk R, Faber KN, Hammond AT, Glick BS, Veenhuis M, Kiel JA (2001) Tagging Hansenula polymorpha genes by random integration of linear DNA fragments (RALF). Mol Genet Genomics 266:646–656

    Article  CAS  Google Scholar 

  5. Engel M, Seifert M, Theisinger B, Welter C, Seyfert U (1998) Glyceraldehyde-3-phosphate dehydrogenase and Nm23-H1/nucleoside diphosphate kinase A. Two old enzymes combine for the novel Nm23 protein phosphotransferase function. J Biol Chem 273:20058–20065

    Article  CAS  Google Scholar 

  6. Gonchar MV, Maidan MM, Sibirny AA (2001) A new oxidase-peroxidase kit “Alcotest” for ethanol assays in alcoholic beverages. Food Technol Biotechnol 39:37–42

    CAS  Google Scholar 

  7. Hahn-Hagerdal B, Wahlbom CF, Gardonyi M, van Zyl WH, Cordero Otero RR, Jonsson LJ (2001) Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv Biochem Eng Biotechnol 73:53–84

    CAS  Google Scholar 

  8. Ho NW, Chen Z, Brainard AP, Sedlak M (1999) Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv Biochem Eng Biotechnol 65:163–192

    CAS  Google Scholar 

  9. Jeffries TW, Jin YS (2004) Metabolic engineering for an improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63:495–509

    Article  CAS  Google Scholar 

  10. Jeppsson M, Johansson B, Hahn-Hagerdal B, Gorwa-Grauslund MF (2002) Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol 68:1604–1609

    Article  CAS  Google Scholar 

  11. Kötter P, Ciriacy M (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776–783

    Article  Google Scholar 

  12. Kramarenko T, Karp H, Jarviste A, Alamae T (2000) Sugar repression in the methylotrophic yeast Hansenula polymorpha studied by using hexokinase-negative, glucokinase-negative and double kinase-negative mutants. Folia Microbiol 45:521–529

    CAS  Google Scholar 

  13. Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT (2005) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5:925–934

    Article  CAS  Google Scholar 

  14. Lahtchev KL, Semenova VD, Tolstorukov II, van der Klei I, Veenhuis M (2002) Isolation and properties of genetically defined strains of the methylotrophic yeast Hansenula polymorpha CBS 4732. Arch Microbiol 177:150–158

    Article  CAS  Google Scholar 

  15. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  16. Morimoto S, Matsuo M, Azuma K, Sinskey AJ (1986) Purification and properties of D-xylulose reductase from Pachysolen tannophilus. J Ferment Biotechnol 64:219–225

    Article  CAS  Google Scholar 

  17. Peters BA, Neet KE (1978) Yeast hexokinase PII. Conformation changes induced by substrates and substrate analogues. J Biol Chem 253:6826–6831

    CAS  Google Scholar 

  18. Petschacher B, Leitgeb S, Kavanagh KL, Wilson DK, Nidetzky B (2005) The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Biochem J 385:75–83

    Article  CAS  Google Scholar 

  19. du Preez JC, Bosch M, Prior BA (1986) Xylose fermentation by Candida shehatae and Pichia stipitis—effects of pH, temperature and substrate concentration. Enzyme Microb Technol 8:360–364

    Article  CAS  Google Scholar 

  20. Ramezani-Rad M, Hollenberg CP, Lauber J, Wedler H, Griess E, Wagner C, Albermann K, Hani J, Piontek M, Dahlems U, Gellissen G (2003) The Hansenula polymorpha (strain CBS4732) genome sequencing and analysis. FEMS Yeast Res 4:207–215

    Article  CAS  Google Scholar 

  21. Ryabova OB, Chmil OM, Sibirny AA (2003) Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha. FEMS Yeast Res 4:157–164

    Article  CAS  Google Scholar 

  22. Shi NQ, Davis B, Sherman F, Cruz J, Jeffries TW (1999) Disruption of the cytochrome c gene in xylose-utilizing yeast Pichia stipitis leads to higher ethanol production. Yeast 15:1021–1030

    Article  CAS  Google Scholar 

  23. Simpson FJ (1966) D-xylulokinase. Meth Enzymol 9:454–458

    Article  CAS  Google Scholar 

  24. Traff KL, Otero Cordero RR, van Zyl WH, Hahn-Hagerdal B (2001) Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl Environ Microbiol 67:5668–5674

    Article  CAS  Google Scholar 

  25. Tsolas O, Joris L (1975) Transaldolase. Meth Enzymol 42:290–297

    CAS  Google Scholar 

  26. Verduyn C, Van Kleef R, Frank J, Schreuder H, Van Dijken JP, Scheffers WA (1985) Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochem J 226:669–677

    CAS  Google Scholar 

  27. Voronovsky AY, Ryabova OB, Verba OV, Ishchuk OP, Dmytruk KV, Sibirny AA (2005) Expression of xylA genes encoding xylose isomerases from Escherichia coli and Streptomyces coelicolor in the methylotrophic yeast Hansenula polymorpha. FEMS Yeast Res 5:1055–1062

    Article  CAS  Google Scholar 

  28. Wolf K (1996) Nonconventional yeasts in biotechnology. Springer, Berlin, Heidelberg New York

    Google Scholar 

  29. Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Dr. O.V. Stasyk for critical reading the manuscript and to Mrs B.V. Kshanovska (both from Institute of Cell Biology, NAS of Ukraine, Lviv) for participation in isolation of H. polymorpha mutants. The work was supported in part by the Polish National research grant KBN 3 PO4B 003 23 and the INTAS grant Nr 05-1000005-7730.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriy A. Sibirny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabek-Lejko, D., Ryabova, O.B., Oklejewicz, B. et al. Plate ethanol-screening assay for selection of the Pichia stipitis and Hansenula polymorpha yeast mutants with altered capability for xylose alcoholic fermentation. J Ind Microbiol Biotechnol 33, 934–940 (2006). https://doi.org/10.1007/s10295-006-0147-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-006-0147-7

Keywords

Navigation