Skip to main content
Log in

Influence of Osmotic Stress on Fermentative Production of Succinic Acid by Actinobacillus succinogenes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study investigated the influence of osmotic stress on succinic acid production by Actinobacillus succinogenes NJ113. Both cell growth and succinic acid production were inhibited with the increase in osmotic stress of the medium. The use of three different osmoprotectants in the production of succinic acid was studied in order to decrease the inhibitory effects of osmotic stress during fermentation. Results indicated that proline offers optimal osmoprotection in the production of succinic acid by A. succinogenes NJ113. In tests of batch fermentation, the maximum cell concentration was observed to be 5.36 g DCW/L after the addition of 25 mmol/L proline to the fermentation medium. The cell concentration was 24% higher than that noted for the control. A total quantity of 56.2 g/L of succinic acid was produced, with a production rate of 1 g/L per hour, after 56 h of fermentation. The concentration and productivity of succinic acid was observed to be increased by 22.2% and 22%, respectively, as compared with the control. The specific activity levels of key enzymes in the metabolic network was noted to be higher following the addition of proline, particularly in the later stages of fermentation. This method of enhancing succinic acid production by the addition of an osmoprotectant may potentially provide an alternative approach for enhanced production of other organic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Werpy, T., & Petersen, G. (2004). Top value added chemicals from biomass. U.S. Department of Energy.

  2. Song, H., & Lee, S. Y. (2006). Enzyme and Microbial Technology, 39, 352–361.

    Article  CAS  Google Scholar 

  3. Beauprez, J. J., Mey, M. D., & Soetaert, W. K. (2010). Process Biochemistry, 45, 1103–1114.

    Article  CAS  Google Scholar 

  4. Lin, S. K., Du, C. Y., Koutinas, A., Wang, R. H., & Webb, C. (2008). Biochemical Engineering Journal, 41, 128–135.

    Article  CAS  Google Scholar 

  5. Li, Q., Wang, D., Wu, Y., Yang, M. H., Li, W. L., Xing, J. M., et al. (2010). The Journal of Microbiology, 48, 290–296.

    Article  CAS  Google Scholar 

  6. Liu, L., Xu, Q. L., Li, Y., Shi, Z. P., Zhu, Y., Du, G. C., et al. (2007). Biotechnology and Bioengineering, 97, 825–832.

    Article  CAS  Google Scholar 

  7. Roth, W. G., Porter, S. E., Leckie, M. P., Porter, B. E., & Dietzler, D. N. (1985). Biochemical and Biophysical Research Communications, 126, 442–449.

    Article  CAS  Google Scholar 

  8. Roth, W. G., Leckie, M. P., & Dietzler, D. N. (1985). Biochemical and Biophysical Research Communications, 126, 434–441.

    Article  CAS  Google Scholar 

  9. Walter, R. P., Morris, J. G., & Kell, D. B. (1987). Journal of General Microbiology, 133, 259–266.

    CAS  Google Scholar 

  10. Meury, J. (1988). Archives of Microbiology, 149, 232–239.

    Article  CAS  Google Scholar 

  11. Hohmann, S. (2002). Microbiology and Molecular Biology Reviews, 66, 300–372.

    Article  CAS  Google Scholar 

  12. Schubert, T., Maskow, T., Benndorf, D., Harms, H., & Breuer, U. (2007). Applied and Environmental Microbiology, 73, 3343–3347.

    Article  CAS  Google Scholar 

  13. Saum, S. H., & Muller, V. (2007). The Journal of Bacteriology, 189, 6968–6975.

    Article  CAS  Google Scholar 

  14. Varela, C., Agosin, E., Baez, M., Klapa, M., & Stephanopoulos, G. (2003). Applied Microbiology Biotechnology, 60, 547–555.

    CAS  Google Scholar 

  15. Simonin, H., Beney, L., & Gervais, P. (2008). Biotechnology and Bioengineering, 100, 325–333.

    Article  CAS  Google Scholar 

  16. Turk, M., Montiel, V., Zigon, D., Plemenitas, A., & Ramos, J. (2007). Microbiology, 153, 3586–3592.

    Article  CAS  Google Scholar 

  17. Anderson, C., Helmerius, J., Hodge, D., Berglund, K. A., & Rova, U. (2009). Biotechnology Progress, 25, 116–123.

    Article  Google Scholar 

  18. Xu, S., Zhou, J. W., Liu, L. M., & Chen, J. (2010). Biotechnology and Bioprocess Engineering, 15, 285–292.

    Article  CAS  Google Scholar 

  19. Purvis, J. E., Yomano, L. P., & Ingram, L. O. (2005). Applied Environmental and Microbiology, 71, 3761–3769.

    Article  CAS  Google Scholar 

  20. Chen, K. Q., Jiang, M., Wei, P., Yao, J. M., & Wu, H. (2010). Applied Biochemistry and Biotechnology, 160, 477–485.

    Article  CAS  Google Scholar 

  21. Li, J., Jiang, M., Chen, K. Q., Shang, L. G., Wei, P., Ying, H. J., et al. (2010). Process Biochemistry, 45, 980–985.

    Article  CAS  Google Scholar 

  22. Van der Werf, M. J., Guettler, M. V., Jain, M. K., & Zeikus, J. G. (1997). Archives of Microbiology, 167, 332–342.

    Article  Google Scholar 

  23. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  24. Lee, P. C., Lee, W. G., Lee, S. Y., & Chang, H. N. (1999). Process Biochemistry, 35, 49–55.

    Article  CAS  Google Scholar 

  25. Brown, A. D., & Simpson, J. R. (1972). Journal of General Microbiology, 72, 589–591.

    CAS  Google Scholar 

  26. Csonka, L. N. (1989). Microbiological Reviews, 53, 121–147.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (project no. 2011CB707405), the National Natural Science Foundation of China (project no. 21076105), the State Key Laboratory of Materials-Oriented Chemical Engineering Foundation of Nanjing University of Technology, the Science and Technology Achievement Transformation Project of Jiangsu Province, and Qing Lan Project of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, X., Li, J., Zheng, X. et al. Influence of Osmotic Stress on Fermentative Production of Succinic Acid by Actinobacillus succinogenes . Appl Biochem Biotechnol 165, 138–147 (2011). https://doi.org/10.1007/s12010-011-9239-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9239-6

Keywords

Navigation