Skip to main content
Log in

Succinic Acid Production from Acid Hydrolysate of Corn Fiber by Actinobacillus succinogenes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Dilute acid hydrolysate of corn fiber was used as carbon source for the production of succinic acid by Actinobacillus succinogenes NJ113. The optimized hydrolysis conditions were obtained by orthogonal experiments. When corn fiber particles were of 20 mesh in size and treated with 1.0% sulfuric acid at 121 °C for 2 h, the total sugar yield could reach 63.3%. It was found that CaCO3 neutralization combined with activated carbon adsorption was an effective method to remove fermentation inhibitors especially furfural that presented in the acid hydrolysate of corn fiber. Only 5.2% of the total sugar was lost, while 91.9% of furfural was removed. The yield of succinic acid was higher than 72.0% with the detoxified corn fiber hydrolysate as the carbon source in anaerobic bottles or 7.5 L fermentor cultures. It was proved that the corn fiber hydrolysate could be an alternative to glucose for the production of succinic acid by A. succinogenes NJ113.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Willke, T., & Vorlop, K. D. (2004). Applied Microbiology and Biotechnology, 66, 131–142. doi:10.1007/s00253-004-1733-0.

    Article  CAS  Google Scholar 

  2. Song, H., & Lee, S. Y. (2006). Enzyme and Microbial Technology, 39, 352–361. doi:10.1016/j.enzmictec.2005.11.043.

    Article  CAS  Google Scholar 

  3. Zeikus, J. G., Jain, M. K., & Elankovan, P. (1999). Applied Microbiology and Biotechnology, 51, 525–545. doi:10.1007/s002530051431.

    Article  Google Scholar 

  4. Lee, P. C., Lee, W. G., Kwon, S., & Lee, S. Y. (2000). Applied Microbiology and Biotechnology, 54, 23–27. doi:10.1007/s002530000331.

    Article  CAS  Google Scholar 

  5. Guettler, M. V., Jain, M. K., & Rumler, D. (1996). US Patent 5,573,931.

  6. Kim, D. Y., Yim, S. C., Lee, P. C., & Lee, W. G. (2004). Enzyme and Microbial Technology, 35, 648–653. doi:10.1016/j.enzmictec.2004.08.018.

    Article  CAS  Google Scholar 

  7. Mckinlay, J. B., Zeikus, J. G., & Vieille, C. (2005). Applied and Environmental Microbiology, 71, 6651–6656. doi:10.1128/AEM.71.11.6651-6656.2005.

    Article  CAS  Google Scholar 

  8. Hespell, R. B., O’Bryan, P. J., Moniruzzaman, M., & Bothast, R. J. (1997). Applied Biochemistry and Biotechnology, 62, 87–97. doi:10.1007/BF02787986.

    Article  CAS  Google Scholar 

  9. Saha, B. C., & Bothast, R. J. (1999). Applied Biochemistry and Biotechnology, 76, 65–77. doi:10.1385/ABAB:76:2:65.

    Article  CAS  Google Scholar 

  10. Zhu, Y., Wu, Z., & Yang, S. (2002). Process Biochemistry, 38, 657–666. doi:10.1016/S0032-9592(02)00162-0.

    Article  CAS  Google Scholar 

  11. Karel, G., & Rodney, J. B. (1997). Process Biochemistry, 32, 405–415. doi:10.1016/S0032-9592(96)00095-7.

    Article  Google Scholar 

  12. Gáspár, M., Kálmán, G., & Réczey, K. (2007). Process Biochemistry, 42, 1135–1139. doi:10.1016/j.procbio.2007.04.003.

    Article  Google Scholar 

  13. Timothy, D. L., & Bruce, S. D. (2000). Process Biochemistry, 35, 765–769. doi:10.1016/S0032-9592(99)00137-5.

    Article  Google Scholar 

  14. Larsson, S., Palmqvist, E., Tengborg, C., Stenberg, K., & Zacchi, G. (1999). Enzyme and Microbial Technology, 24, 151–159. doi:10.1016/S0141-0229(98)00101-X.

    Article  CAS  Google Scholar 

  15. Buhner, J., & Agblevor, F. A. (2004). Applied Biochemistry and Biotechnology, 119, 13–30. doi:10.1385/ABAB:119:1:13.

    Article  CAS  Google Scholar 

  16. Palmqvist, E., & Hahn-Hagerdal, B. (2000). Bioresource Technology, 74, 17–24. doi:10.1016/S0960-8524(99)00160-1.

    Article  CAS  Google Scholar 

  17. Luo, C., Brink, D., & Blanch, H. (2002). Biomass and Bioenergy, 22, 125–138. doi:10.1016/S0961-9534(01)00061-7.

    Article  CAS  Google Scholar 

  18. Roberto, I. C., Lacis, L. C., Barbosa, M. F. S., & Mancilha, I. M. (1991). Process Biochemistry, 26, 15–21. doi:10.1016/0032-9592(91)80003-8.

    Article  CAS  Google Scholar 

  19. Martinez, A., Rodriguez, M. E., Wells, M. L., & York, S. W. (2001). Biotechnology Progress, 17, 287–293. doi:10.1021/bp0001720.

    Article  CAS  Google Scholar 

  20. Jonsson, L. (1998). Applied Microbiology and Biotechnology, 49, 691–697. doi:10.1007/s002530051233.

    Article  CAS  Google Scholar 

  21. Nilvebrant, N. O., Reinmann, A., & Larsson, S. (2001). Applied Biochemistry and Biotechnology, 91–93, 35–49. doi:10.1385/ABAB:91-93:1-9:35.

    Article  Google Scholar 

  22. Villarreal, M. L. M., Prata, A. M. R., Felipe, M. G. A., Almeida, E., & Silva, J. B. (2006). Enzyme and Microbial Technology, 40, 17–24. doi:10.1016/j.enzmictec.2005.10.032.

    Article  CAS  Google Scholar 

  23. Parajo, J. C., Domınguez, H., & Domınguez, J. M. (1997). Enzyme and Microbial Technology, 21, 18–24. doi:10.1016/S0141-0229(96)00210-4.

    Article  CAS  Google Scholar 

  24. Alves, L. A., Felipe, M. G. A., Almeida e Silva, J. B., Silva, S. S., & Prata, A. M. R. (1998). Applied Biochemistry and Biotechnology, 70–72, 89–98. doi:10.1007/BF02920126.

    Article  Google Scholar 

  25. Press editors (2003), National standard assembly of China, Standard Press of China, Beijing.

  26. Ouyang, P. K., & Chen, Y. R. (1995). Theory and application for hydrolysis of plant biomass, China Science and Technology Press, pp. 21–24.

  27. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428. doi:10.1021/ac60147a030.

    Article  CAS  Google Scholar 

  28. Saha, B. C., Dien, B. S., & Bothast, R. J. (1998). Applied Biochemistry and Biotechnology, 70–72, 115–125. doi:10.1007/BF02920129.

    Article  Google Scholar 

  29. Chandel, A. K., Kapoor, R. K., Singh, A., & Kuhad, R. C. (2007). Bioresource Technology, 98, 1947–1950. doi:10.1016/j.biortech.2006.07.047.

    Article  CAS  Google Scholar 

  30. Mariët, J., Werf, V. D., Guettler, M. V., Jain, M. K., & Zeikus, J. G. (1997). Archives of Microbiology, 167, 332–342. doi:10.1007/s002030050452.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grant no. 2006AA02Z235 from “863” Program of China, grant no. 20606017 from National Natural Science Foundation of China, and grant no. BSCX200608 from Doctoral Dissertations’ innovation Foundation of Nanjing University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, K., Jiang, M., Wei, P. et al. Succinic Acid Production from Acid Hydrolysate of Corn Fiber by Actinobacillus succinogenes . Appl Biochem Biotechnol 160, 477–485 (2010). https://doi.org/10.1007/s12010-008-8367-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8367-0

Keywords

Navigation