Skip to main content
Log in

Kinetic evaluation of products inhibition to succinic acid producers Escherichia coli NZN111, AFP111, BL21, and Actinobacillus succinogenes 130ZT

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Succinic acid is one of the platform compounds and its production via natural feedstocks has drawn worldwide concerns. To evaluate the inhibitory effects of fermentation products on the growth of Actinobacillus succinogenes 130ZT and Escherichia coli NZN111, AFP111, BL21, fermentations with addition of individual products in medium were carried out. The cell growth was inhibited when the concentrations of formate, acetate, lactate, and succinate were at range of 8.8–17.6 g/L, 10–40 g/L, 9–18 g/L, and 10–80 g/L, respectively. For these two species of bacteria, E. coli was more resistant to acid products than A. succinogenes, while both endured succinate rather than by-products. As a result of end product inhibition, succinate production yield by A. succinogenes decreased from 1.11 to 0.49 g/g glucose. Logistic and Monod mathematical models were presented to simulate the inhibition kinetics. The Logistic model was found more suitable for describing the overall synergistic inhibitory effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, C., D. Hodge, K.A. Berglund, and U. Rova. 2007. Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli. Biotechnol. Progr. 23, 381–388.

    Article  CAS  Google Scholar 

  • Chen, C.C. and L.K. Ju. 2002. Coupled lactic acid fermentation and adsorption. Appl. Microbiol. Biotechnol. 59, 170–174.

    Article  CAS  PubMed  Google Scholar 

  • Colin, T., A. Bories, and G. Moulin. 2000. Inhibition of Clostridium butyricum by 1, 3-propanediol and diols during glycerol fermentation. Appl. Microbiol. Biotechnol. 54, 201–205.

    Article  CAS  PubMed  Google Scholar 

  • Corona-González, R.I., A. Bories, V. González-Álvarez, and C. Pelayo-Ortiz. 2008. Kinetic study of succinic acid production by Actinobacillus succinogenes ZT-130. Process Biochem. 43, 1047–1053.

    Article  Google Scholar 

  • Delhomme, C., D. Weuster-Botz, and F.E. Kühn. 2009. Succinic acid from renewable resources as a C4 building-block chemical-a review of the catalytic possibilities in aqueous media. Green Chem. 11, 13–26.

    Article  CAS  Google Scholar 

  • Goncalves, L.M.D., A. Ramos, A.S. Almedia, A.M.R.B. Xavier, and M.J.T. Carrondo. 1997. Elucidation of the mechanism of lactic acid growth inhibition and production in batch cultures of Lactobacillus rhamnosus. Appl. Microbiol. Biotechnol. 48, 346–350.

    Article  CAS  Google Scholar 

  • Guettler, M.V., M.K. Jain, and D. Rumler. 1996. Method for making succinic acid, bacterial variants for use in the process, and methods for obtaining variants. US Patent 5,573,931.

  • Guettler, M.V., D. RumLer, and M.K. Jain. 1999. Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen. Int. J. Syst. Bacteriol. 49, 207–216.

    Article  CAS  PubMed  Google Scholar 

  • Kacena, M.A., G.A. Merrell, B. Manfredi, E.E. Smith, D.M. Klaus, and P. Todd. 1999. Bacterial growth in space flight: logistic growth curve parameters for Escherichia coli and Bacillus subtilis. Appl. Microbiol. Biotechnol. 51, 229–234.

    Article  CAS  PubMed  Google Scholar 

  • Kang, H.C., Y.H. Park, and S.J. Go. 2003. Growth inhibition of a phytopathogenic fungus, Colletotrichum species by acetic acid. Microbiol. Res. 158, 321–326.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S.Y., J.M. Kim, H. Song, J.W. Lee, T.Y. Kim, and Y.S. Jang. 2008. From genome sequence to integrated bioprocess for succinic acid production by Mannheimia succiniciproducens. Appl. Microbiol. Biotechnol. 79, 11–22.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S.L., D.Y. Lee, T.Y. Kim, B.H. Kim, J.W. Lee, and S.Y. Lee. 2005. Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Appl. Environ. Microbiol. 71, 7880–7887.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S.J., H. Song, and S.Y. Lee. 2006. Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl. Environ. Microbiol. 72, 1939–1948.

    Article  CAS  PubMed  Google Scholar 

  • Lin, C.S.K., C.Y. Du, A. Koutinas, R. Wang, and C. Webb. 2008. Substrate and product inhibition kinetics in succinic acid production by Actinobacillus succinogenes. Biochem. Eng. J. 41, 128–135.

    Article  CAS  Google Scholar 

  • Luque, R., C.S.K. Lin, C.Y. Du, D.J. Macquarrie, A. Koutinas, R.H. Wang, C. Webb, and J.H. Clark. 2009. Chemical transformations of succinic acid recovered from fermentation broths by a novel direct vacuum distillation-crystallisation method. Green Chem. 11, 193–200.

    Article  CAS  Google Scholar 

  • McKinlay, J.B. and C. Vieille. 2008. 13C-metabolic flux analysis of Actinobacillus succinogenes fermentative metabolism at different NaHCO3 and H2 concentrations. Metab. Eng. 10, 55–68.

    Article  CAS  PubMed  Google Scholar 

  • McKinlay, J.B., C. Vieille, and J.G. Zeikus. 2007. Prospects for a bio-based succinate industry. Appl. Microbiol. Biotechnol. 76, 727–740.

    Article  CAS  PubMed  Google Scholar 

  • Okino, S., R. Noburyu, M. Suda, T. Jojima, M. Inui, and H. Yukawa. 2008. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl. Microbiol. Biotechnol. 81, 459–464.

    Article  CAS  PubMed  Google Scholar 

  • Oliva, J., M. Negro, F. Sáez, I. Ballesteros, P. Manzanares, A. González, and M. Ballesteros. 2006. Effects of acetic acid, furfural and catechol combinations on ethanol fermentation of Kluyveromyces marxianus. Process Biochem. 41, 1223–1228.

    Article  CAS  Google Scholar 

  • Park, D.H. and J.G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181, 2403–2410.

    CAS  PubMed  Google Scholar 

  • Peleg, M., M.G. Corradini, and M.D. Normand. 2007. The logistic (Verhulst) model for sigmoid microbial growth curves revisited. Food Res. Int. 40, 808–818.

    Article  Google Scholar 

  • Phue, J.N. and J. Shiloach. 2005. Impact of dissolved oxygen concentration on acetate accumulation and physiology of E. coli BL21 evaluating transcription levels of key genes at different dissolved oxygen conditions. Metab. Eng. 7, 353–363.

    Article  CAS  PubMed  Google Scholar 

  • Sánchez, A.M., G.N. Bennett, and K.Y. San. 2005. Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab. Eng. 7, 229–239.

    Article  PubMed  Google Scholar 

  • Song, H., S.H. Jang, J.M. Park, and S.Y. Lee. 2008. Modeling of batch fermentation kinetics for succinic acid production by Mannheimia succiniciproducens. Biochem. Eng. J. 40, 107–115.

    Article  CAS  Google Scholar 

  • Urbance, S.E., A.L. Pometto, A.A. DiSpirito, and Y. Denli. 2004. Evaluation of succinic acid continuous and repeat-batch biofilm fermentation by Actinobacillus succinogenes using plastic composite support bioreactors. Appl. Microbiol. Biotechnol. 65, 664–670.

    Article  CAS  PubMed  Google Scholar 

  • Vemuri, G.N., M.A. Eiteman, and E. Altman. 2002. Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions. J. Ind. Microbiol. Biotechnol. 28, 325–332.

    Article  CAS  PubMed  Google Scholar 

  • Wee, Y.J., J.S. Yun, K.H. Kang, and H.W. Ryu. 2002. Continuous production of succinic acid by a fumarate-reducing bacterium immobilized in a hollow-fiber bioreactor. Appl. Biochem. Biotechnol. 98–100, 1093–1104.

    Article  PubMed  Google Scholar 

  • Yang, X.P. and G.T. Tsao. 1994. Mathematical modeling of inhibition kinetics in acetone-butanol fermentation by Clostridium acetobutylicum. Biotechnol. Progr. 10, 532–538.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Xing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Wang, D., Wu, Y. et al. Kinetic evaluation of products inhibition to succinic acid producers Escherichia coli NZN111, AFP111, BL21, and Actinobacillus succinogenes 130ZT . J Microbiol. 48, 290–296 (2010). https://doi.org/10.1007/s12275-010-9262-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-010-9262-2

Keywords

Navigation