Skip to main content
Log in

Toxic hexavalent chromium reduction by Bacillus pumilis, Cellulosimicrobium cellulans and Exiguobacterium

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Three bacterial strains Bacillus pumilis, Cellulosimicrobium cellulans and Exiguobacterium were investigated when grown in Luria-Bertani (LB) medium at 500 μg/mL Cr(VI). The hexavalent chromium reduction was measured by growing the strains in DeLeo and Ehrlich (1994) medium at 200 and 400 μg/mL K2CrO4. The optimal Cr (VI) reduction by strains B. pumilis, Exigubacterium and C. cellulans was 51%, 39%, and 41%, respectively, at an initial K2CrO4 concentration of 200 μg/mL at pH 3 and temperature 37°C. At an initial chromate concentration of 400 μg/mL, the Cr(VI) reduction by strains B. pumilis, Exigubacterium and C. cellulans was 24%, 19%, and 18%, respectively at pH 3 at 37°C after 24 h. These strains have ability to reduce toxic hexavalent chromium to the less mobile trivalent chromium at a wide range of different environmental conditions and can be useful for the treatment of contaminated wastewater and soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrafioti E, Kalderis D, Diamadopoulos E. 2014. Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. J. Environ. Manage., 133: 309–314.

    Article  Google Scholar 

  • Das A P, Mishra S. 2010. Biodegradation of the metallic carcinogen hexavalent chromium Cr (VI) by an indigenously isolated bacterial strain. J. Carcinog., 9(1): 6, http://dx.doi.org/10.4103/1477-3163.63584.

    Article  Google Scholar 

  • DeLeo P C, Ehrlich H L. 1994. Reduction of hexavalent chromium by Pseudomonas fluorescens LB 300 in batch and continuous cultures. Appl. Microbiol. Biotechnol., 40: 756–759.

    Article  Google Scholar 

  • Dhal B, Thatoi H, Das N, Pandey B D. 2010. Reduction of hexavalent chromium by Bacillus sp. isolated from chromite mine soils and characterization of reduced product. J. Chem. Technol. Biotechnol., 85(11): 1471–1479.

    Google Scholar 

  • Essahale A, Malki M, Marín I, Moumni M. 2012. Hexavalent chromium reduction and accumulation by Acinetobacter AB1 isolated from Fez Tanneries in Morocco. Indian J. Microbiol., 52(1): 48–53.

    Article  Google Scholar 

  • Faisal M, Hasnain S. 2004. Comparative study of Cr (VI) uptake and reduction in industrial effluent by Ochrobactrum intermedium and Brevibacterium sp. Biotechnol. Lett., 26(21): 1 623–1 628.

    Article  Google Scholar 

  • Faisal M, Hasnain S. 2006. Growth stimulatory effect of Ochrobactrum intermedium and Bacillus cereus on Vigna radiata plants. Lett. Appl. Microbiol., 43(4): 461–466.

    Article  Google Scholar 

  • Hameed A, Hasnain S. 2012. Isolation and molecular identification of metal resistant Synechocystis from polluted areas. Afr. J. Microbiol. Res., 6(3): 648–652.

    Google Scholar 

  • Han X, Wong Y S, Wong M H, Tam N F Y. 2007. Biosorption and bioreduction of Cr(VI) by a microalgal isolate, Chlorella miniata. J. Hazard. Mater., 146(1): 65–72.

    Article  Google Scholar 

  • Horsfall M J, Arbia A, Spiff A. 2004. Removal of Cu (II) and Zn (II) ions from wastewater by cassava (Manihot esculenta Cranz) waste biomass. Afr. J. Biotechnol., 2(10): 360–364.

    Google Scholar 

  • Lee S, Lee J-U, Chon H, Lee J. 2008. Reduction of Cr (VI) by indigenous bacteria in Cr-contaminated sediment under aerobic condition. J. Geochem. Explor., 96(2): 144–147.

    Article  Google Scholar 

  • Loukidou M X, Zouboulis A I, Karapantsios T D, Matis K A. 2004. Equilibrium and kinetic modeling of chromium (VI) biosorption by Aeromonas caviae. Colloid Surfac A, 242(1): 93–104.

    Article  Google Scholar 

  • Mukherjee K, Nandi R, Saha D, Saha B. 2014. Surfactant-assisted enhancement of bioremediation rate for hexavalent chromium by water extract of Sajina (Moringa oleifera) flower. Desalin. Water Treat, http://dx.doi.org/10.1080/19443994.2014.884477.

    Google Scholar 

  • Naja G, Mustin C, Volesky B, Berthelin J. 2005. A high-resolution titrator: a new approach to studying binding sites of microbial biosorbents. Water Res., 39(4): 579–588.

    Article  Google Scholar 

  • Onyancha D, Mavura W, Ngila J C, Ongoma P, Chacha J. 2008. Studies of chromium removal from tannery wastewaters by algae biosorbents, Spirogyra condensate and Rhizoclonium hieroglyphicum. J. Hazard. Mater., 158(2): 605–614.

    Article  Google Scholar 

  • Pal A, Paul A. 2004. Aerobic chromate reduction by chromium-resistant bacteria isolated from serpentine soil. Microbiol. Res., 159(4): 347–354.

    Article  Google Scholar 

  • Parameswari E, Lakshmanan A, Thilagavathi T. 2009. Chromate resistance and reduction by bacterial isolates. Aus. J. Basic Appl. Sci., 3(2): 1 363–1 368.

    Google Scholar 

  • Preetha B, Viruthagiri T. 2005. Biosorption of zinc (II) by Rhizopus arrhizus: equilibrium and kinetic modelling. Afr. J. Biotechnol., 4(6): 506–508.

    Google Scholar 

  • Romera E, González F, Ballester A, Blázquez M, Munoz J. 2007. Comparative study of biosorption of heavy metals using different types of algae. Bioresource Technol., 98(17): 3 344–3 353.

    Article  Google Scholar 

  • Tahri Joutey N, Bahafid W, Sayel H, Ananou S, El Ghachtouli N. 2014. Hexavalent chromium removal by a novel Serratia proteamaculans isolated from the bank of Sebou River (Morocco). Environ. Sci. Pollut. Res. Int., 21(4): 3 060–3 072.

    Article  Google Scholar 

  • Thacker U, Parikh R, Shouche Y, Madamwar D. 2006. Hexavalent chromium reduction by Providencia sp. Process Biochem., 41(6): 1 332–1 337.

    Article  Google Scholar 

  • Zahoor A, Rehman A. 2009. Isolation of Cr (VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. J. Environ. Sci., 21(6): 814–820.

    Article  Google Scholar 

  • Zayed A M, Terry N. 2003. Chromium in the environment: factors affecting biological remediation. Plant Soil, 249(1): 139–156.

    Article  Google Scholar 

  • Zhang K, Li F. 2011. Isolation and characterization of a chromium-resistant bacterium Serratia sp. Cr-10 from a chromate-contaminated site. Appl. Microbiol. Biotechnol., 90(3): 1 163–1 169.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Faisal.

Additional information

Supported by the University of Punjab

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, F., Faisal, M. Toxic hexavalent chromium reduction by Bacillus pumilis, Cellulosimicrobium cellulans and Exiguobacterium . Chin. J. Ocean. Limnol. 33, 585–589 (2015). https://doi.org/10.1007/s00343-015-4155-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-015-4155-1

Keyword

Navigation