Skip to main content
Log in

Hydrolytic Enzyme of Cellulose for Complex Formulation Applied Research

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To improve the enzymatic hydrolytic efficiency and reduce the supplementation of enzymes, the mixture designed experimental approach was used to optimize the composition of enzyme mixture and promote the hydrolysis of ball-milled corn stover. From the experimental results, a synergistic effect was found when combinations of the three enzymes, two kinds of cellulases and a kind of xylanase, were used. The optimal hydrolysis of pretreated corn stover accorded with enzymes activity ration of FPU/CMCase/β-glucosidase/xylanase = 4.4:1:75:829, and the hydrolysis efficiency of corn stover increased significantly compared with using individual enzyme. The results indicated that the mixture design experiment could be an effective tool for optimized enzyme mixture for lignocellulose hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., et al. (2006). The path forward for biofuels and biomaterials. Science, 311(27), 484–489.

    Article  CAS  Google Scholar 

  2. Imai, M., Ikari, K., & Suzuki, I. (2004). High-performance hydrolysis of cellulose using mixed cellulase species and ultrasonication pretreatment. Biochemical Engineering Journal, 17(2), 79–83.

    Article  CAS  Google Scholar 

  3. Tengerdy, R. P., & Szakacs, G. (2003). Bioconversion of lignocellulose in solid substrate fermentation. Biochemical Engineering Journal, 13(2–3), 169–179.

    Article  CAS  Google Scholar 

  4. Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., et al. (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 315(5813), 804–807.

    Article  CAS  Google Scholar 

  5. Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., et al. (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 315, 804–807.

    Article  CAS  Google Scholar 

  6. Han, Y., & Chen, H. (2010). Synergism between hydrophobic proteins of corn stover and cellulase in lignocellulose hydrolysis. Biochemical Engineering Journal, 48(2), 218–224.

    Article  CAS  Google Scholar 

  7. Fujii, M., Mori, J. I., Homma, T., & Taniguchi, M. (1995). Synergy between an endoglucanase and cellobiohydrolases from Trichoderma koningii. The Chemical Engineering Journal and the Biochemical Engineering Journal, 59(3), 315–319.

    Article  CAS  Google Scholar 

  8. Tabka, M. G., Herpoel-Gimbert, I., Monod, F., Asther, M., & Sigoillot, J. C. (2006). Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzyme and Microbial Technology, 39(4), 897–902.

    Article  CAS  Google Scholar 

  9. Öhgren, K., Bura, R., Saddler, J., & Zacchi, G. (2007). Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresource Technology, 98(13), 2503–2510.

    Article  Google Scholar 

  10. Gan, Q., Allen, S. J., & Taylor, G. (2002). Design and operation of an integrated membrane reactor for enzymatic cellulose hydrolysis. Biochemical Engineering Journal, 12(3), 223–229.

    Article  CAS  Google Scholar 

  11. Zhang, M. J., Su, R. X., Qi, W., & He, Z. M. (2010). Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes. Applied Biochemistry and Biotechnology, 160(5), 1407–1414.

    Article  CAS  Google Scholar 

  12. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., et al. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686.

    Article  CAS  Google Scholar 

  13. Tu, M., & Saddler, J. N. (2010). Potential enzyme cost reduction with the addition of surfactant during the hydrolysis of pretreated softwood. Applied Biochemistry and Biotechnology, 161(1–8), 274–287.

    Article  CAS  Google Scholar 

  14. Zhou, J., Wang, Y.-H., Chu, J., Luo, L.-Z., Zhuang, Y.-P., & Zhang, S.-L. (2009). Optimization of cellulase mixture for efficient hydrolysis of steam-exploded corn stover by statistically designed experiments. Bioresource Technology, 100(2), 819–825.

    Article  CAS  Google Scholar 

  15. Nidetzky, B., Steiner, W., Hayn, M., & Claeyssens, M. (1994). Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochemical Journal, 298, 705–710.

    CAS  Google Scholar 

  16. Zhang, Y. H. P., Ding, S. Y., Mielenz, J. R., Cui, J. B., Elander, R. T., Laser, M., et al. (2007). Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnology and Bioengineering, 97(2), 214–223.

    Article  CAS  Google Scholar 

  17. Baker, J. O., Ehrman, C. I., Adney, W. S., Thomas, S. R., & Himmel, M. E. (1998). Hydrolysis of cellulose using ternary mixtures of purified cellulases. Applied Biochemistry and Biotechnology, 70–72, 395–403.

    Article  Google Scholar 

  18. Selig, M. J., Knoshaug, E. P., Adney, W. S., Himmel, M. E., & Decker, S. R. (2008). Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities. Bioresource Technology, 99(11), 4997–5005.

    Article  CAS  Google Scholar 

  19. Mais, U., Esteghlalian, A. R., Saddler, J. N., & Mansfield, S. D. (2002). Enhancing the enzymatic hydrolysis of cellulosic materials using simultaneous ball milling. Applied Biochemistry and Biotechnology, 98, 815–832.

    Article  Google Scholar 

  20. Gusakov, A. V., Salanovich, T. N., Antonov, A. I., Ustinov, B. B., Okunev, O. N., Burlingame, R., et al. (2007). Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 97(5), 1028–1038.

    Article  CAS  Google Scholar 

  21. Irwin, D. C., Spezio, M., Walker, L. P., & Wilson, D. B. (1993). Activity studies of eight purified cellulases: Specificity, synergism, and binding domain effects. Biotechnology and Bioengineering, 42(8), 1002–1013.

    Article  CAS  Google Scholar 

  22. Berlin, A., Maximenko, V., Gilkes, N., & Saddler, J. (2007). Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnology and Bioengineering, 97, 287–296.

    Article  CAS  Google Scholar 

  23. Rispoli, F. J., & Shah, V. (2007). Mixture design as a first step for optimization of fermentation medium for cutinase production from Colletotrichum lindemuthianum. Journal of Industrial Microbiology & Biotechnology, 34(5), 349–355.

    Article  CAS  Google Scholar 

  24. Navarrete-Bolanos, J. L., Jimenez-Islas, H., Botello-Alvarez, E., & Rico-Martinez, R. (2003). Mixed culture optimization for marigold flower ensilage via experimental design and response surface methodology. Journal of Agricultural and Food Chemistry, 51(8), 2206–2211.

    Article  CAS  Google Scholar 

  25. Lin, Z., Huang, H., Zhang, H., Yan, L., Chen, J., Jin, Q., et al. (2009). Optimization of process parameters of ball milling pretreatment of corn stalk. Transactions of the Chinese Society of Agricultural Engineering, 25(3), 202–204.

    Google Scholar 

  26. Lin, Z., Huang, H., Zhang, H., Zhang, L., Yan, L., & Chen, J. (2010). Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 162, 1872–1880.

    Article  CAS  Google Scholar 

  27. NREL. National Renewable Energy Laboratory standard methods of Laboratory Analytical Procedure (LAP) (2009). Available from: < http://www.nrel.gov/biomass/analytical_procedures.html >

  28. Han, Y., & Chen, H. (2007). Synergism between corn stover protein and cellulase. Enzyme and Microbial Technology, 41(5), 638–645.

    Article  CAS  Google Scholar 

  29. Kumar, R., & Wyman, C. E. (2009). Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresource Technology, 100(18), 4203–4213.

    Article  CAS  Google Scholar 

  30. Jing, D. B., Li, P. J., Xiong, X. Z., & Wang, L. H. (2007). Optimization of cellulase complex formulation for peashrub biomass hydrolysis. Applied Microbiology and Biotechnology, 75(4), 793–800.

    Article  CAS  Google Scholar 

  31. Ohgren, K., Bura, R., Saddler, J., & Zacchi, G. (2007). Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresource Technology, 98(13), 2503–2510.

    Article  Google Scholar 

  32. Sticklen, M. B. (2008). Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nature Reviews Genetics, 9, 433–443.

    Article  CAS  Google Scholar 

  33. Sanchez, M. M., Irwin, D. C., Pastor, F. I. J., Wilson, D. B., & Diaz, P. (2004). Synergistic activity of Paenibacillus sp BP-23 cellobiohydrolase Ce148C in association with the contiguous endoglucanase Ce19B and with endoor exo-acting glucanases from Thermobifida fusca. Biotechnology and Bioengineering, 87(2), 161–169.

    Article  CAS  Google Scholar 

  34. Yang, Q., Luo, K., Li, X.-M., Wang, D.-B., Zheng, W., Zeng, G.-M., et al. (2010). Enhanced efficiency of biological excess sludge hydrolysis under anaerobic digestion by additional enzymes. Bioresource Technology, 101(9), 2924–2930.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by China Petroleum & Chemical Corporation (No. 207035), National Natural Science Foundation of China (No. 20876078), the Key Program of National Natural Science Foundation of China (No. 20936002), United Foundation of NSFC and Guangdong Province (No. U0733001), National Hi-tech Research and Development Program of China (No. 2009AA02Z08) and National Basic Research Program of China (No. 2007CB707805).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, ZX., Zhang, HM., Ji, XJ. et al. Hydrolytic Enzyme of Cellulose for Complex Formulation Applied Research. Appl Biochem Biotechnol 164, 23–33 (2011). https://doi.org/10.1007/s12010-010-9111-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9111-0

Keywords

Navigation