Skip to main content

Advertisement

Log in

Proteomic studies in biomedically and industrially relevant fungi

  • NICB special issue
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Historically, the proteomic investigation of filamentous fungi has been restrained by difficulties associated with efficient protein extraction and the lack of extensive fungal genome sequence databases. The advent of robust protein extraction and separation technologies, combined with protein mass spectrometry and emerging genome sequence data, is leading to the emergence of extensive new knowledge on the nature of these organisms. In this review, we discuss some recent technological advances and their role in exploring the proteome of Aspergillus spp., along with other biotechnologically relevant fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbas A, Koc H, Liu F, Tien M (2005) Fungal degradation of wood: initial proteomic analysis of extracellular proteins of Phanerochaete chrysosporium grown in oak substrate. Curr Genet 47:49–56

    Article  CAS  Google Scholar 

  • Asif AR, Oellerich M, Amstrong VW, Riemenschneider B, Monod M, Reichard U (2006) Proteome of conidial surface associated proteins of Aspergillus fumigatus reflecting potential vaccine candidates and allergens. J Proteome Res 4:954–962

    Article  Google Scholar 

  • Belen Suarez M, Sanz L, Chanorro MI, Rey M, Gonzalez FJ, Llobell A, Monte E (2005) Proteomic analysis of secreted proteins from Trichoderma harzianum. Identification of a fungal cell wall-induced aspartic protease. Fungal Genet Biol 11:924–934

    Article  Google Scholar 

  • Brakhage AA, Langfelder K (2002) Menacing mold: the molecular biology of Aspergillus fumigatus. Ann Rev Microbiol 56:433–455

    Article  CAS  Google Scholar 

  • Breci L, Hattrup E, Keeler M, Letarte J, Johnson R, Haynes PA (2005) Comprehensive proteomics in yeast using chromatographic fractionation, gas phase fractionation, protein gel electrophoresis, and isoelectric focusing. Proteomics 5:2018–2028

    Article  CAS  Google Scholar 

  • Brookman JL, Denning DW (2000) Molecular genetics in Aspergillus fumigatus. Curr Opin Microbiol 3:468–474

    Article  CAS  Google Scholar 

  • Bruneau JM, Magnin T, Tagat E, Legrand R, Bernard M, Diaquin M, Fudali C, Latge JP (2001) Proteome analysis of Aspergillus fumigatus identifies glycosylphosphatidylinositol-anchored proteins associated to the cell wall biosynthesis. Electrophoresis 13:2812–2823

    Article  Google Scholar 

  • Carberry S, Neville CM, Kavanagh KA, Doyle S (2006) Analysis of major intracellular proteins of Aspergillus fumigatus by MALDI mass spectrometry: identification and characterisation of an elongation factor 1B protein with glutathione transferase activity. Biochem Biophys Res Commun 24:1096–1104

    Article  Google Scholar 

  • Enoch DA, Ludlam HA, Brown NM (2006) Invasive fungal infections: a review of epidemiology and management options. J Med Microbiol 55:809–818

    Article  CAS  Google Scholar 

  • Graumann J, Dunipace LA, Seol JH, McDonald WH, Yates JR 3rd, Wold BJ, Deshaies RJ (2004) Applicability of tandem affinity purification MudPIT to pathway proteomics in yeast. Mol Cell Proteomics 3:226–237

    Article  CAS  Google Scholar 

  • Griffin TJ, Gygi SP, Ideker T, Rist B, Eng J, Hood L, Aebersold R (2002) Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol Cell Proteomics 1:323–333

    Article  CAS  Google Scholar 

  • Grinyer J, McKay M, Nevalainen H, Herbert BR (2004a) Fungal proteomics: initial mapping if biological control strain Trichoderma harzianum. Curr Genet 45:163–169

    Article  CAS  Google Scholar 

  • Grinyer J, McKay M, Herbert B, Nevalainen H (2004b) Fungal proteomics: mapping the mitochondrial proteins of a Trichoderma harzianum strain applied for biological control. Curr Genet 3:170–175

    Article  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19: 1720–1730

    CAS  Google Scholar 

  • Kontoyiannis DP, Bodey GP (2002) Invasive aspergillosis in 2002: an update. Eur J Clin Microbiol Infect Dis 21:161–172

    Article  CAS  Google Scholar 

  • Ito JI, Lyons JM, Hong TB, Tamae D, Liu YK, Wilczynski SP, Kalkum M (2006) Vaccinations with recombinant variants of Aspergillus fumigatus allergen Asp f 3 protect mice against invasive aspergillosis. Infect Immun 74:5075–5084

    Article  CAS  Google Scholar 

  • Kniemeyer O, Lessing F, Scheibner O, Hertweck C, Brakhage AA (2006) Optimisation of a 2-D gel electrophoresis protocol for the human-pathogenic fungus Aspergillus fumigatus. Curr Genet 49:178–189

    Article  CAS  Google Scholar 

  • Lanne B, Panfilov O (2004) Protein Staining Influences the Quality of Mass Spectra Obtained by Peptide Mass Fingerprinting after Separation on 2-D Gels. A Comparison of Staining with Coomassie Brilliant Blue and Sypro Ruby. J Proteome Res 4:175–179

    Article  Google Scholar 

  • Mabey JE, Anderson MJ, Giles PF et al (2004). CADRE: the Central Aspergillus Data REpository. Nucleic Acids Res 32:401–405

    Article  Google Scholar 

  • Medina ML, Kiernan UA, Francisci WA (2004) Proteomic analysis of rutin-induced secreted proteins from Aspergillus flavus. Fungal Genet Biol 41:327–335

    Article  CAS  Google Scholar 

  • Medina ML, Haynes PA, Breci L, Francisco WA (2005) Analysis of secreted proteins from Aspergillus flavus. Proteomics 5:3153–161

    Article  CAS  Google Scholar 

  • Miller I, Crawford J, Gianazza E (2006) Protein stains for proteomic applications: Which, when, why? Proteomics 6:5385–5408

    Article  CAS  Google Scholar 

  • Nierman WC, Pain A, Anderson MJ et al (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:1151–1156

    Article  CAS  Google Scholar 

  • Oda K, Kakizono D, Yamada O et al (2006) Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions. Appl Environ Microbiol 72:3448–457

    Article  CAS  Google Scholar 

  • Patton WF (2002) Detection technologies in proteome analysis. J Chromatogr B 771:3–31

    Article  CAS  Google Scholar 

  • Resing KA, Ahn NG (2005) Proteomics strategies for protein identification. FEBS Lett 579:885–889

    Article  CAS  Google Scholar 

  • Reiber K, Reeves EP, Neville CM et al (2005) The expression of selected non-ribosomal peptide synthetases in Aspergillus fumigatus is controlled by the availability of free iron. FEMS Microbiol Lett 248:83–91

    Article  CAS  Google Scholar 

  • Rupp S (2004) Proteomics on its way to study host-pathogen interaction in Candida albicans. Curr Opin Microbiol 7:330–335

    Article  CAS  Google Scholar 

  • Schmitt S, Prokisch H, Schlunck T et al (2006) Proteome analysis of mitochondrial outer membrane from Neurospora crassa. Proteomics 6:72–80

    Article  CAS  Google Scholar 

  • Shimizu M, Wariishi H (2005) Development of a sample preparation method for fungal proteomics. FEMS Microbiol Lett 247:17–22

    Article  CAS  Google Scholar 

  • Sinha P, Poland J, Schnolzer M, Rabilloud T (2001) A new silver staining apparatus and procedure for matrix-assisted laser desorption/ionization-time of flight analysis of proteins after two-dimensional electrophoresis. Proteomics 1:835–840

    Article  CAS  Google Scholar 

  • Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  CAS  Google Scholar 

  • Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    Article  CAS  Google Scholar 

  • Weeks ME, Sinclair J, Butt A et al (2006) A parallel proteomic and metabolomic analysis of the hydrogen peroxide- and Sty1p-dependent stress response in Schizosaccharomyces pombe. Proteomics 6:2772–2796

    Article  CAS  Google Scholar 

  • Wei J, Sun J, Yu W et al (2005) Global proteome discovery using an online three-dimensional LC-MS/MS. J Proteome Res 4:801–8

    Article  CAS  Google Scholar 

  • Wildgruber R, Reil G, Drews O, Parlar H, Gorg A (2002) Web-based two-dimensional database of Saccharomyces cerevisiae proteins using immobilized pH gradients from pH 6 to pH 12 and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics 6:727–732

    Article  Google Scholar 

  • Wu WW, Wang G, Baek SJ, Shen RF (2006) Comparative Study of Three Proteomic Quantitative Methods, DIGE, cICAT, and iTRAQ, Using 2D Gel- or LC-MALDI TOF/TOF. J Proteome Res 5:651–658

    Article  CAS  Google Scholar 

  • Zhu L, Nguyen C.H, Sato T, Takeuchi M (2004) Analysis of Secreted Proteins during Conidial Germination of Aspergillus oryzae RIB40. Biosci Biotechnol Biochem 68:2607–2612

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All funding for this work was obtained from the Irish Higher Education Authority—Programme for Research in Third Level Institutions (PRTLI) Cycle 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Doyle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carberry, S., Doyle, S. Proteomic studies in biomedically and industrially relevant fungi. Cytotechnology 53, 95–100 (2007). https://doi.org/10.1007/s10616-007-9054-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-007-9054-7

Keywords

Navigation