Skip to main content
Log in

Deficiency of Cellulase Activity Measurements for Enzyme Evaluation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Switchgrass was used as a model feedstock to determine the influence of pretreatment conditions and biomass quality on enzymatic hydrolysis using different enzyme products. Dilute sulfuric acid and soaking in aqueous ammonia pretreatments were used to produce biomass with varied levels of hemicellulose and lignin sheathing. Pretreated switchgrass solids were tested with simple enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) with three commercial enzyme products: Accellerase 1000 (Genencor), Spezyme CP (Genencor)/Novozyme 188 (Novozymes), and Celluclast/Novozyme 188 (Novozymes). Enzymes were loaded on a common activity basis (FPU/g cellulose and CBU/g cellulose). Despite identical enzyme loadings, glucose yields were significantly different for both acid and alkaline pretreatments but differences diminished as hydrolysis progressed for acid-pretreated biomass. Cellobiose concentrations in Accellerase treatments indicated an initial β-glucosidase limitation that became less significant over time. SSF experiments showed that differences in glucose and ethanol yields could not be attributed to enzyme product inhibition. Yield discrepancies of glucose or ethanol in acid pretreatment, alkaline pretreatment, and acid pretreatment/SSF were as much as 15%, 19%, and 5%. These results indicate that standardized protocols for measuring enzyme activity may not be adequate for assessing activity using pretreated biomass substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., et al. (2005). Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  2. Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Bioresource Technology, 96, 2026–2032.

    Article  CAS  Google Scholar 

  3. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  4. Öhgren, K., Bengtsson, O., Gorwa-Grauslund, M. F., Galbe, M., Hahn-Hägerdal, B., & Zacchi, G. (2006). Journal of Biotechnology, 126, 488–498.

    Article  Google Scholar 

  5. Palmqvist, E., & Hahn-Hägerdal, B. (2000). Bioresource Technology, 74, 17–24.

    Article  CAS  Google Scholar 

  6. Saha, B. C., Iten, L. B., Cotta, M. A., & Wu, Y. V. (2005). Process Biochemistry, 40, 3693–3700.

    Article  CAS  Google Scholar 

  7. Garcia-Aparicio, M. P., Ballesteros, I., Gonzalez, A., Oliva, J. M., Ballesteros, M., & Negro, M. J. (2006). Applied Biochemistry and Biotechnology, 129, 278–288.

    Article  Google Scholar 

  8. Cantarella, M., Cantarella, L., Gallifuoco, A., Spera, A., & Alfani, F. (2004). Biotechnology Progress, 20, 200–206.

    Article  CAS  Google Scholar 

  9. Palmqvist, E., Hahn-Hägerdal, B., Galbe, M., & Zacchi, G. (1996). Enzyme and Microbial Technology, 19, 470–476.

    Article  CAS  Google Scholar 

  10. Klinke, H. B., Ahring, B. K., Schmidt, A. S., & Thomsen, A. B. (2002). Bioresource Technology, 82, 15–26.

    Article  CAS  Google Scholar 

  11. Nishikawa, N. K., Sutcliffe, R., & Saddler, J. N. (1988). Applied Microbiology and Biotechnology, 27, 549–552.

    CAS  Google Scholar 

  12. Panagiotou, G., & Olsson, L. (2007). Biotechnology and Bioengineering, 96, 250–258.

    Article  CAS  Google Scholar 

  13. Xiao, Z., Zhang, X., Gregg, D. J., & Saddler, J. N. (2004). Applied Biochemistry and Biotechnology, 113–116, 1115–1126.

    Article  Google Scholar 

  14. Foreman, P. K., Brown, D., Dankmeyer, L., Dean, R., Diener, S., Dunn-Coleman, N. S., et al. (2003). Journal of Biological Chemistry, 278, 31988–31997.

    Article  Google Scholar 

  15. Barr, B. K., Hsieh, Y.-L., Ganem, B., & Wilson, D. B. (1996). Biochemistry, 35, 586–592.

    Article  CAS  Google Scholar 

  16. Irwin, D. C., Spezio, M., Walker, L. P., & Wilson, D. B. (1993). Biotechnology and Bioengineering, 42, 1002–1013.

    Article  CAS  Google Scholar 

  17. Mansfield, S. D., Mooney, C., & Saddler, J. N. (1999). Biotechnology Progress, 15, 804–816.

    Article  CAS  Google Scholar 

  18. Adney, B., & Baker, J. (1996). Measurement of cellulase activity. Golden, CO: National Renewable Energy Laboratory.

    Google Scholar 

  19. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  20. Tsao, G., Gong, C., & Cao, N. (2000). Applied Biochemistry and Biotechnology, 84–86, 505–524.

    Article  Google Scholar 

  21. Allen, S. G., Schulman, D., Lichwa, J., Antal, M. J., Jennings, E., & Elander, R. (2001). Industrial & Engineering Chemistry Research, 40, 2352–2361.

    Article  CAS  Google Scholar 

  22. Isci, A., Anex, R. P., Raman, D. R., & Himmelsbach, J. N. (2008). Applied Biochemistry and Biotechnology, 144, 69–77.

    Article  CAS  Google Scholar 

  23. Mosier, N., Hendrickson, R., Ho, N., Sedlak, M., & Ladisch, M. R. (2005). Bioresource Technology, 96, 1986–1993.

    Article  CAS  Google Scholar 

  24. Tucker, M. P., Kim, K. H., Newman, M. M., & Nguyen, Q. A. (2003). Applied Biochemistry and Biotechnology, 105, 165–177.

    Article  Google Scholar 

  25. Kumar, R., & Wyman, C. E. (2009). Biotechnology Progress, 25, 302–314.

    Article  CAS  Google Scholar 

  26. Jeoh, T., Ishizawa, C. I., Davis, M. F., Himmel, M. E., Adney, W. S., & Johnson, D. K. (2007). Biotechnology and Bioengineering, 98, 112–122.

    Article  CAS  Google Scholar 

  27. Kumar, R., & Wyman, C. E. (2009). Biotechnology Progress, 25, 807–819.

    Article  CAS  Google Scholar 

  28. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., et al. (2006). Determination of structural carbohydrates and lignin in biomass. Golden, CO: National Renewable Energy Laboratory.

    Google Scholar 

  29. Dowe, N., & McMillan, J. (2000). SSF experimental protocols: Lignocellulosic biomass hydrolysis and fermentation. Golden, CO: National Renewable Energy Laboratory.

    Google Scholar 

  30. Kovács, K., Szakács, G., & Zacchi, G. (2009). Process Biochemistry, 44, 1323–1329.

    Article  Google Scholar 

  31. Breuil, C., Mayers, P., & Saddler, J. N. (1986). Biotechnology and Bioengineering, 28, 1653–1656.

    Article  CAS  Google Scholar 

  32. Barbagallo, R. N., Spagna, G., Palmeri, R., & Torriani, S. (2004). Enzyme and Microbial Technology, 34, 292–296.

    Article  CAS  Google Scholar 

  33. Holtzapple, M. T., Caram, H. S., & Humphrey, A. E. (1984). Biotechnology and Bioengineering, 26, 753–757.

    Article  CAS  Google Scholar 

  34. Garcia-Aparicio, M. P., Ballesteros, M., Manzanares, P., Ballesteros, I., Gonzalez, A., & Negro, M. J. (2007). Applied Biochemistry and Biotechnology, 136–140, 353–365.

    Article  Google Scholar 

  35. Zhang, M., Su, R., Qi, W., & He, Z. (2010). Applied Biochemistry and Biotechnology, 160, 1407–1414.

    Google Scholar 

  36. Mandels, M., & Reese, E. T. (1965). Annual review of Phytopathology, 3, 85–102.

    Article  CAS  Google Scholar 

  37. Hamilton, L. A., & John Wase, D. A. (1991). Process Biochemistry, 26, 287–292.

    Article  CAS  Google Scholar 

  38. Bhikhabhai, R., Johansson, G., & Pettersson, G. (1984). Journal of Applied Biochemistry, 6, 336–345.

    CAS  Google Scholar 

  39. Saloheimo, M., Lehtovaara, P., Penttila, M., Teeri, T., Stahlberg, J., Johansson, G., et al. (1988). Gene, 63, 11–21.

    Article  CAS  Google Scholar 

  40. Berlin, A., Maximenko, V., Gilkes, N., & Saddler, J. (2007). Biotechnology and Bioengineering, 97, 287–296.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Paul Nyren, director of the Central Grasslands Research Center (Streeter, ND, USA), for supplying switchgrass. Qingwu Xue, NDSU Agricultural and Biosystems Engineering working with the USDA ARS Northern Great Plains Research Laboratory (Mandan, ND, USA), performed some compositional analysis. Chad Sietsema is acknowledged for the assistance with alkaline pretreatment and fermentation. Genencor generously supplied samples of Spezyme CP and Accellerase 1000 for this work. The authors are grateful to Tina Jeoh, University of California at Davis, for her helpful comments for the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott W. Pryor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pryor, S.W., Nahar, N. Deficiency of Cellulase Activity Measurements for Enzyme Evaluation. Appl Biochem Biotechnol 162, 1737–1750 (2010). https://doi.org/10.1007/s12010-010-8955-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-8955-7

Keywords

Navigation