Skip to main content
Log in

The Role of Product Inhibition as a Yield-Determining Factor in Enzymatic High-Solid Hydrolysis of Pretreated Corn Stover

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Industrially, enzymatic hydrolysis of lignocellulose at high solid content is preferable over low solids due to a reduction in processing costs. Unfortunately, the economic benefits are counteracted by a linear decrease in yield with solid content, referred to as the “solid effect” in the literature. In the current study, we investigate the contribution of product inhibition to the solid effect (7–33 % solids). Product inhibition was measured directly by adding glucose to high-solid hydrolysis samples and indirectly through variation of water content and beta-glucosidase concentration. The results suggest that the solid effect is mainly controlled by product inhibition under the given experimental conditions (washed pretreated corn stover as substrate). Cellobiose was found to be approximately 15 times more inhibitory than glucose on a molar scale. However, considering that glucose concentrations are at least 100 times higher than cellobiose concentrations under industrial conditions, glucose inhibition of cellulases is suggested to be the main cause of the solid effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gomez, L. D., Steele-King, C. G., & McQueen-Mason, S. J. (2008). New Phytologist, 178, 473–485.

    Article  CAS  Google Scholar 

  2. Galbe, M., & Zacchi, G. (2002). Applied Microbiology and Biotechnology, 59, 618–628.

    Article  CAS  Google Scholar 

  3. Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbiology and Molecular Biology Reviews, 66, 506–577.

    Article  CAS  Google Scholar 

  4. Zhang, Y., Himmel, M. E., & Mielenz, J. R. (2006). Biotechnology Advances, 24, 452–481.

    Article  CAS  Google Scholar 

  5. Jorgensen, H., Kristensen, J. B., & Felby, C. (2007). Biofuels Bioproducts & Biorefining-Biofpr, 1, 119–134.

    Article  Google Scholar 

  6. Modenbach, A. A., & Nokes, S. E. (2013). Biomass & Bioenergy, 56, 526–544.

    Article  CAS  Google Scholar 

  7. Heinzelman, P., Snow, C. D., Wu, I., Nguyen, C., Villalobos, A., Govindarajan, S., Minshull, J., & Arnold, F. H. (2009). Proceedings of the National Academy of Sciences of the United States of America, 106, 5610–5615.

    Article  CAS  Google Scholar 

  8. Andric, P., Meyer, A. S., Jensen, P. A., & Dam-Johansen, K. (2010). Biotechnology Advances, 28, 308–324.

    Article  CAS  Google Scholar 

  9. Ohgren, K., Vehmaanpera, J., Siika-Aho, M., Galbe, M., Viikari, L., & Zacchi, G. (2007). Enzyme and Microbial Technology, 40, 607–613.

    Article  Google Scholar 

  10. Andric, P., Meyer, A. S., Jensen, P. A., & Dam-Johansen, K. (2010). Biotechnology Advances, 28, 407–425.

    Article  CAS  Google Scholar 

  11. Hodge, D. B., Karim, M., Schell, D. J., & McMillan, J. D. (2009). Applied Biochemistry and Biotechnology, 152, 88–107.

    Article  CAS  Google Scholar 

  12. Wingren, A., Galbe, M., & Zacchi, G. (2003). Biotechnology Progress, 19, 1109–1117.

    Article  CAS  Google Scholar 

  13. Humbird, D., Mohagheghi, A., Dowe, N., & Schell, D. J. (2010). Biotechnology Progress, 26, 1245–1251.

    Article  CAS  Google Scholar 

  14. Kristensen, J. B., Felby, C., & Jorgensen, H. (2009). Biotechnology for Biofuels, 2, 11.

    Article  Google Scholar 

  15. Hodge, D. B., Karim, M., Schell, D. J., & McMillan, J. D. (2008). Bioresource Technology, 99, 8940–8948.

    Article  CAS  Google Scholar 

  16. Puri, D. J., Heaven, S., & Banks, C. J. (2013). Biotechnology for Biofuels, 6, 107.

    Article  CAS  Google Scholar 

  17. Holtzapple, M., Cognata, M., Shu, Y., & Hendrickson, C. (1990). Biotechnology and Bioengineering, 36, 275–287.

    Article  CAS  Google Scholar 

  18. Du, F., Wolger, E., Wallace, L., Liu, A., Kaper, T., & Kelemen, B. (2010). Applied Biochemistry and Biotechnology, 161, 313–317.

    Article  CAS  Google Scholar 

  19. Xiao, Z. Z., Zhang, X., Gregg, D. J., & Saddler, J. N. (2004). Applied Biochemistry and Biotechnology, 113, 1115–1126.

    Article  Google Scholar 

  20. Roberts, K. M., Lavenson, D. M., Tozzi, E. J., McCarthy, M. J., & Jeoh, T. (2011). Cellulose, 18, 759–773.

    Article  CAS  Google Scholar 

  21. Olsen, S., Bohlin, C., Murphy, L., Borch, K., McFarland, K., Sweeny, M., & Westh, P. (2011). Enzyme and Microbial Technology, 49, 353–359.

    Article  CAS  Google Scholar 

  22. Ximenes, E., Kim, Y., Mosier, N., Dien, B., & Ladisch, M. (2010). Enzyme and Microbial Technology, 46, 170–176.

    Article  CAS  Google Scholar 

  23. Baumann, M. J., Borch, K., & Westh, P. (2011). Biotechnology for Biofuels, 4, 45.

    Article  CAS  Google Scholar 

  24. Kim, Y., Ximenes, E., Mosier, N. S., & Ladisch, M. R. (2011). Enzyme and Microbial Technology, 48, 408–415.

    Article  CAS  Google Scholar 

  25. Qing, Q., Yang, B., & Wyman, C. E. (2010). Bioresource Technology, 101, 9624–9630.

    Article  CAS  Google Scholar 

  26. Kristensen, J. B., Felby, C., & Jorgensen, H. (2009). Applied Biochemistry and Biotechnology, 156, 557–562.

    Article  CAS  Google Scholar 

  27. Selig, M. J., Hsieh, C. W. C., Thygesen, L. G., Himmel, M. E., Felby, C., & Decker, S. R. (2012). Biotechnology Progress, 28, 1478–1490.

    Article  CAS  Google Scholar 

  28. Murphy, L., Borch, K., McFarland, K., Bohlin, C., & Westh, P. (2010). Enzyme and Microbial Technology, 46, 141–146.

    Article  CAS  Google Scholar 

  29. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.

    CAS  Google Scholar 

  30. Olsen, S. N., Lumby, E., McFarland, K., Borch, K., & Westh, P. (2011). Applied Biochemistry and Biotechnology, 163, 626–635.

    Article  CAS  Google Scholar 

  31. Berlin, A., Maximenko, V., Gilkes, N., & Saddler, J. (2007). Biotechnology and Bioengineering, 97, 287–296.

    Article  CAS  Google Scholar 

  32. O'Dwyer, J. P., Zhu, L., Granda, C. B., & Holtzapple, M. T. (2007). Bioresource Technology, 98, 2969–2977.

    Article  Google Scholar 

  33. Bohlin, C., Olsen, S. N., Morant, M. D., Patkar, S., Borch, K., & Westh, P. (2010). Biotechnology and Bioengineering, 107, 943–952.

    Article  CAS  Google Scholar 

  34. Singhania, R. R., Patel, A. K., Sukumaran, R. K., Larroche, C., & Pandey, A. (2013). Bioresource Technology, 127, 500–507.

    Article  CAS  Google Scholar 

  35. Hsieh, C. W., Cannella, D., Jorgensen, H., Felby, C., & Thygesen, L. G. (2014). Journal of Agricultural and Food Chemistry, 62, 3800–3805.

    Article  CAS  Google Scholar 

  36. Olsen, S., Ramlov, H., & Westh, P. (2007). Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology, 148, 339–345.

    Article  CAS  Google Scholar 

  37. Kumar, R., & Wyman, C. (2009). Biotechnology and Bioengineering, 102, 457–467.

    Article  CAS  Google Scholar 

  38. Murphy, L., Bohlin, C., Baumann, M. J., Olsen, S. N., Sorensen, T. H., Anderson, L., Borch, K., & Westh, P. (2013). Enzyme and Microbial Technology, 52, 163–169.

    Article  CAS  Google Scholar 

  39. Gruno, M., Valjamae, P., Pettersson, G., & Johansson, G. (2004). Biotechnology and Bioengineering, 86, 503–511.

    Article  CAS  Google Scholar 

  40. Teugjas, H., & Vaeljamaee, P. (2013). Biotechnology for Biofuels, 6, 104.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Westh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olsen, S.N., Borch, K., Cruys-Bagger, N. et al. The Role of Product Inhibition as a Yield-Determining Factor in Enzymatic High-Solid Hydrolysis of Pretreated Corn Stover. Appl Biochem Biotechnol 174, 146–155 (2014). https://doi.org/10.1007/s12010-014-1049-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1049-1

Keywords

Navigation