Skip to main content
Log in

Differential reinforcement of enzymatic hydrolysis by adding chemicals and accessory proteins to high solid loading substrates with different pretreatments

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

High dosage of enzyme is required to achieve effective lignocellulose hydrolysis, especially at high-solid loadings, which is a significant barrier to large-scale bioconversion of lignocellulose. Here, we screened four chemical additives and three accessory proteins for their effects on the enzymatic hydrolysis of various lignocellulosic materials. The effects were found to be highly dependent on the composition and solid loadings of substrates. For xylan-extracted lignin-rich corncob residue, the enhancing effect of PEG 6000 was most pronounced and negligibly affected by solid content, which reduced more than half of enzyme demand at 20% dry matter (DM). Lytic polysaccharide monooxygenase enhanced the hydrolysis of ammonium sulfite wheat straw pulp, and its addition reduced about half of protein demand at the solid loading of 20% DM. Supplementation of the additives in the hydrolysis of pure cellulose and complex lignocellulosic materials revealed that their effects are tightly linked to pretreatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807

    Article  CAS  PubMed  Google Scholar 

  2. Paulova L, Patakova P, Branska B, Rychtera M, Melzoch K (2015) Lignocellulosic ethanol: technology design and its impact on process efficiency. Biotechnol Adv 33(6):1091–1107

    Article  CAS  PubMed  Google Scholar 

  3. Jorgensen H, Vibe-Pedersen J, Larsen J, Felby C (2007) Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng 96(5):862–870

    Article  CAS  PubMed  Google Scholar 

  4. Du J, Zhang F, Li Y, Zhang H, Liang J, Zheng H, Huang H (2014) Enzymatic liquefaction and saccharification of pretreated corn stover at high-solids concentrations in a horizontal rotating bioreactor. Bioprocess Biosyst Eng 37(2):173–181

    Article  CAS  PubMed  Google Scholar 

  5. Du J, Li Y, Zhang H, Zheng H, Huang H (2014) Factors to decrease the cellulose conversion of enzymatic hydrolysis of lignocellulose at high solid concentrations. Cellulose 21(4):2409–2417

    Article  CAS  Google Scholar 

  6. Du J, Cao Y, Liu G, Zhao J, Li X, Qu Y (2017) Identifying and overcoming the effect of mass transfer limitation on decreased yield in enzymatic hydrolysis of lignocellulose at high solid concentrations. Biores Technol 229:88–95

    Article  CAS  Google Scholar 

  7. Ellila S, Fonseca L, Uchima C, Cota J, Goldman GH, Saloheimo M, Sacon V, Siika-Aho M (2017) Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnol Biofuels 10:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109(4):1083–1087

    Article  CAS  PubMed  Google Scholar 

  9. Nguyen TY, Cai CM, Osman O, Kumar R, Wyman CE (2016) CELF pretreatment of corn stover boosts ethanol titers and yields from high solids SSF with low enzyme loadings. Green Chem 18(6):1581–1589

    Article  CAS  Google Scholar 

  10. Bhagia S, Kumar R, Wyman CE (2017) Effects of dilute acid and flowthrough pretreatments and BSA supplementation on enzymatic deconstruction of poplar by cellulase and xylanase. Carbohyd Polym 157:1940–1948

    Article  CAS  Google Scholar 

  11. Alkasrawi M, Eriksson T, Börjesson J, Wingren A, Galbe M, Tjerneld F, Zacchi G (2003) The effect of Tween-20 on simultaneous saccharification and fermentation of softwood to ethanol. Enzym Microb Technol 33(1):71–78

    Article  CAS  Google Scholar 

  12. Kristensen JB, Börjesson J, Bruun MH, Tjerneld F, Jørgensen H (2007) Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose. Enzym Microb Technol 40(4):888–895

    Article  CAS  Google Scholar 

  13. Eriksson T, Karlsson J, Tjerneld F (2002) A model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase I (Cel7A) and endoglucanase I (Cel7B) of Trichoderma reesei. Appl Biochem Biotechnol 101(1):41–60

    Article  CAS  PubMed  Google Scholar 

  14. Yang B, Wyman CE (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 94(4):611–617

    Article  CAS  PubMed  Google Scholar 

  15. Liu H, Zhu JY, Fu SY (2010) Effects of lignin-metal complexation on enzymatic hydrolysis of cellulose. J Agric Food Chem 58(12):7233–7238

    Article  CAS  PubMed  Google Scholar 

  16. Li K, Wang X, Wang J, Zhang J (2015) Benefits from additives and xylanase during enzymatic hydrolysis of bamboo shoot and mature bamboo. Biores Technol 192:424–431

    Article  CAS  Google Scholar 

  17. Agger JW, Isaksen T, Várnai A, Vidal-Melgosa S, Willats WG, Ludwig R, Horn SJ, Eijsink VG, Westereng B (2014) Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci 111(17):6287–6292

    Article  CAS  PubMed  Google Scholar 

  18. Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5(1):1–13

    Article  CAS  Google Scholar 

  19. Kang K, Wang S, Lai G, Liu G, Xing M (2013) Characterization of a novel swollenin from Penicillium oxalicum in facilitating enzymatic saccharification of cellulose. BMC Biotechnol 13(1):1

    Article  CAS  Google Scholar 

  20. Sun FF, Hong J, Hu J, Saddler JN, Fang X, Zhang Z, Shen S (2015) Accessory enzymes influence cellulase hydrolysis of the model substrate and the realistic lignocellulosic biomass. Enzym Microb Technol 79:42–48

    Article  CAS  Google Scholar 

  21. Harris PV, Xu F, Kreel NE, Kang C, Fukuyama S (2014) New enzyme insights drive advances in commercial ethanol production. Curr Opin Chem Biol 19:162–170

    Article  CAS  PubMed  Google Scholar 

  22. Kumar R, Wyman CE (2009) Effect of additives on the digestibility of corn stover solids following pretreatment by leading technologies. Biotechnol Bioeng 102(6):1544–1557

    Article  CAS  PubMed  Google Scholar 

  23. Carvalho AFA, Oliva Neto PD, Silva DFD, Pastore GM (2013) Xylo-oligosaccharides from lignocellulosic materials: chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Res Int 51(1):75–85

    Article  CAS  Google Scholar 

  24. Song W, Han X, Qian Y, Liu G, Yao G, Zhong Y, Qu Y (2016) Proteomic analysis of the biomass hydrolytic potentials of Penicillium oxalicum lignocellulolytic enzyme system. Biotechnol Biofuels 9:68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. NREL Lab Anal Proced 1617:1–16

    Google Scholar 

  26. Wood TM, Bha K (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112

    Article  CAS  Google Scholar 

  27. Hu Y, Xue H, Liu G, Song X, Qu Y (2015) Efficient production and evaluation of lignocellulolytic enzymes using a constitutive protein expression system in Penicillium oxalicum. J Ind Microbiol Biotechnol 42(6):877–887

    Article  CAS  PubMed  Google Scholar 

  28. Peng S, Cao Q, Qin Y, Li X, Liu G, Qu Y (2017) An aldonolactonase AltA from Penicillium oxalicum mitigates the inhibition of β-glucosidase during lignocellulose biodegradation. Appl Microbiol Biotechnol 9(101):3627–3636

    Article  CAS  Google Scholar 

  29. Sipos B, Szilágyi M, Sebestyén Z, Perazzini R, Dienes D, Jakab E, Crestini C, Réczey K (2011) Mechanism of the positive effect of poly (ethylene glycol) addition in enzymatic hydrolysis of steam pretreated lignocelluloses. CR Biol 334(11):812–823

    Article  CAS  Google Scholar 

  30. Selig MJ, Thygesen LG, Felby C (2014) Correlating the ability of lignocellulosic polymers to constrain water with the potential to inhibit cellulose saccharification. Biotechnol Biofuels 7(1):159–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Roberts KM, Lavenson DM, Tozzi EJ, McCarthy MJ, Jeoh T (2011) The effects of water interactions in cellulose suspensions on mass transfer and saccharification efficiency at high solids loadings. Cellulose 18(3):759–773

    Article  CAS  Google Scholar 

  32. Hsieh CW, Cannella D, Jorgensen H, Felby C, Thygesen LG (2014) Cellulase inhibition by high concentrations of monosaccharides. J Agric Food Chem 62(17):3800–3805

    Article  CAS  PubMed  Google Scholar 

  33. Hsieh CW, Cannella D, Jorgensen H, Felby C, Thygesen LG (2015) Cellobiohydrolase and endoglucanase respond differently to surfactants during the hydrolysis of cellulose. Biotechnol Biofuels 8:52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li J, Li S, Fan C, Yan Z (2012) The mechanism of poly (ethylene glycol) 4000 effect on enzymatic hydrolysis of lignocellulose. Colloids Surf B 89:203–210

    Article  CAS  Google Scholar 

  35. Srivastava R, Madamwar D, Vyas V (1987) Activation of enzymes by reversed micelles. Biotechnol Bioeng 29(7):901–902

    Article  CAS  PubMed  Google Scholar 

  36. Pereira A, Hoeger IC, Ferrer A, Rencoret J, Del Rio JC, Kruus K, Rahikainen J, Kellock M, Gutierrez A, Rojas OJ (2017) Lignin films from spruce, eucalyptus, and wheat straw studied with electroacoustic and optical sensors: effect of composition and electrostatic screening on enzyme binding. Biomacromolecules 18(4):1322–1332

    Article  CAS  PubMed  Google Scholar 

  37. Guo F, Shi W, Sun W, Li X, Wang F, Zhao J, Qu Y (2014) Differences in the adsorption of enzymes onto lignins from diverse types of lignocellulosic biomass and the underlying mechanism. Biotechnol Biofuels 7(1):38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pereira A, Hoeger IC, Ferrer A, Rencoret J, del Rio JC, Kruus K, Rahikainen J, Kellock M, Gutiérrez A, Rojas OJ (2017) Lignin films from spruce, eucalyptus, and wheat straw studied with electroacoustic and optical sensors: effect of composition and electrostatic screening on enzyme binding. Biomacromol 18(4):1322–1332

    Article  CAS  Google Scholar 

  39. Rahikainen JL, Martin-Sampedro R, Heikkinen H, Rovio S, Marjamaa K, Tamminen T, Rojas OJ, Kruus K (2013) Inhibitory effect of lignin during cellulose bioconversion: the effect of lignin chemistry on non-productive enzyme adsorption. Biores Technol 133:270–278

    Article  CAS  Google Scholar 

  40. Lu X, Zheng X, Li X, Zhao J (2016) Adsorption and mechanism of cellulase enzymes onto lignin isolated from corn stover pretreated with liquid hot water. Biotechnol Biofuels 9:118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Roberts V, Stein V, Reiner T, Lemonidou A, Li X, Lercher JA (2011) Towards quantitative catalytic lignin depolymerization. Chem-A Eur J 17(21):5939–5948

    Article  CAS  Google Scholar 

  42. Wang Z, Xue J, Liu W (2012) Nitrogen fixation and chelating property of wheat ammonium sulfite pulping spent liquor. BioResources 7(1):0777–0788

    CAS  Google Scholar 

  43. Lou H, Zhu J, Lan TQ, Lai H, Qiu X (2013) pH-Induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses. ChemSusChem 6(5):919–927

    Article  CAS  PubMed  Google Scholar 

  44. Hu J, Arantes V, Pribowo A, Gourlay K, Saddler JN (2014) Substrate factors that influence the synergistic interaction of AA9 and cellulases during the enzymatic hydrolysis of biomass. Energy Environ Sci 7(7):2308

    Article  CAS  Google Scholar 

  45. Harris PV, Welner D, McFarland K, Re E, Navarro Poulsen J-C, Brown K, Salbo R, Ding H, Vlasenko E, Merino S (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49(15):3305–3316

    Article  CAS  Google Scholar 

  46. Quinlan RJ, Sweeney MD, Leggio LL, Otten H, Poulsen J-CN, Johansen KS, Krogh KB, Jørgensen CI, Tovborg M, Anthonsen A (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci 108(37):15079–15084

    Article  PubMed  Google Scholar 

  47. Rodríguez-Zúñiga UF, Cannella D, de Campos Giordano R, Giordano RdLC, Jørgensen H, Felby C (2015) Lignocellulose pretreatment technologies affect the level of enzymatic cellulose oxidation by LPMO. Green Chem 17(5):2896–2903

    Article  CAS  Google Scholar 

  48. Andberg M, Penttilä M, Saloheimo M (2015) Swollenin from Trichoderma reesei exhibits hydrolytic activity against cellulosic substrates with features of both endoglucanases and cellobiohydrolases. Biores Technol 181:105–113

    Article  CAS  Google Scholar 

  49. Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssönen E, Bhatia A, Ward M, Penttilä M (2002) Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 269(17):435–442

    Article  CAS  Google Scholar 

  50. Sampedro J, Cosgrove DJ (2005) The expansin superfamily. Genome Biol 6(12):1–11

    Article  CAS  Google Scholar 

  51. Arantes V, Saddler JN (2010) JN: access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3(1):275–277

    Article  CAS  Google Scholar 

  52. Qing Q, Wyman CE (2011) Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnol Biofuels 4(1):1

    Article  CAS  Google Scholar 

  53. Zhang C, Zhuang X, Wang ZJ, Matt F, John FS, Zhu JY (2013) Xylanase supplementation on enzymatic saccharification of dilute acid pretreated poplars at different severities. Cellulose 20(4):1937–1946

    Article  CAS  Google Scholar 

  54. Cannella D, Chia-wen CH, Felby C, Jørgensen H (2012) Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol Biofuels 5(1):1

    Article  CAS  Google Scholar 

  55. Scott BR, Huang HZ, Frickman J, Halvorsen R, Johansen KS (2015) Catalase improves saccharification of lignocellulose by reducing lytic polysaccharide monooxygenase-associated enzyme inactivation. Biotech Lett 38(3):425–434

    Article  CAS  Google Scholar 

  56. Hu J, Chandra R, Arantes V, Gourlay K, van Dyk JS, Saddler JN (2015) The addition of accessory enzymes enhances the hydrolytic performance of cellulase enzymes at high solid loadings. Biores Technol 186:149–153

    Article  CAS  Google Scholar 

  57. Meng X, Ragauskas AJ (2014) Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr Opin Biotechnol 27:150–158

    Article  CAS  PubMed  Google Scholar 

  58. Mesa L, Gonzã¡Lez E, Cara C, Castro E, Mussatto SI (2015) An approach to cellulase recovery from enzymatic hydrolysis of pretreated sugarcane bagasse with high lignin content. Biocatalysis 33(5–6):287–297

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, Heilongjiang Bayi Agricultural University, China (No. 201715).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinbo Qu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Song, W., Zhang, X. et al. Differential reinforcement of enzymatic hydrolysis by adding chemicals and accessory proteins to high solid loading substrates with different pretreatments. Bioprocess Biosyst Eng 41, 1153–1163 (2018). https://doi.org/10.1007/s00449-018-1944-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-1944-x

Keywords

Navigation