Skip to main content
Log in

Heterologous Expression and Characterization of an Endoglucanase from a Symbiotic Protist of the Lower Termite, Reticulitermes speratus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

RsSymEG, an endoglucanase of glycosyl hydrolase family (GHF) 7 encoded by a transcript isolated from the symbiotic protist of the termite Reticulitermes speratus, is expressed in Aspergillus oryzae. Interestingly, purified RsSymEG1 has a relatively higher specific activity (603 μmol min−1 mg−1 protein) and V max value (769.6 unit/mg protein) than previously reported data for GHF7 endoglucanase of Trichoderma ressei. It also has the same K m value (1.97 mg/ml) with Clostridium cellulolyticum enzymes that contain cellulose binding module, a property indicative of high affinity to substrate, though no cellulose binding module is found within it. Thin-layer chromatography analysis revealed that RsSymEG1 preferentially hydrolyzes the β-1,4-cellulosic linkage of cellodextrins into cellobiose and glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sanderson, K. (2006). Nature, 444, 673–676. doi:10.1038/444673a.

    Article  CAS  Google Scholar 

  2. Yamada, A., Inoue, T., Wiwatwitaya, D., et al. (2005). Ecological Research, 20, 453–460. doi:10.1007/s11284-005-0062-9.

    Article  Google Scholar 

  3. Nakashima, K., Watanabe, H., & Azuma, J.-I. (2002). Cellular and Molecular Life Sciences, 59, 1554–1560. doi:10.1007/s00018-002-8528-1.

    Article  CAS  Google Scholar 

  4. Nakashima, K., Watanabe, H., Saitoh, H., et al. (2002). Insect Biochemistry and Molecular Biology, 32, 777–784. doi:10.1016/S0965-1748(01)00160-6.

    Article  CAS  Google Scholar 

  5. Breznak, J. A., & Brune, A. (1994). Annual Review of Entomology, 39, 453–487. doi:10.1146/annurev.en.39.010194.002321.

    Article  CAS  Google Scholar 

  6. Ohtoko, K., Ohkuma, M., Moriya, S., et al. (2000). Extremophiles, 4, 343–349. doi:10.1007/s007920070003.

    Article  CAS  Google Scholar 

  7. Watanabe, H., Nakashima, K., Saito, H., et al. (2002). Cellular and Molecular Life Sciences, 59, 1983–1992. doi:10.1007/PL00012520.

    Article  CAS  Google Scholar 

  8. Li, L., Fröhlich, J., Pfeiffer, P., et al. (2003). Eukaryotic Cell, 2, 1091–1098. doi:10.1128/EC.2.5.1091-1098.2003.

    Article  CAS  Google Scholar 

  9. Inoue, T., Moriya, S., Ohkuma, M., et al. (2005). Gene, 349, 67–75. doi:10.1016/j.gene.2004.11.048.

    Article  CAS  Google Scholar 

  10. Todaka, N., Moriya, S., Saita, K., et al. (2007). FEMS Microbiology Ecology, 59, 592–599. doi:10.1111/j.1574-6941.2006.00237.x.

    Article  CAS  Google Scholar 

  11. Zhou, X., Smith, J. A., Oi, F. M., et al. (2007). Gene, 395, 29–39. doi:10.1016/j.gene.2007.01.004.

    Article  CAS  Google Scholar 

  12. Archer, D. B., & Peberdy, J. F. (1997). Critical Reviews in Biotechnology, 17, 273–306. doi:10.3109/07388559709146616.

    Article  CAS  Google Scholar 

  13. Kitamoto, K. (2002). Advances in Applied Microbiology, 51, 129–153. doi:10.1016/S0065-2164(02)51004-2.

    Article  CAS  Google Scholar 

  14. Mabashi, Y., Kikuma, T., Maruyama, J., et al. (2006). Bioscience, Biotechnology, and Biochemistry, 70, 1882–1889. doi:10.1271/bbb.60052.

    Article  CAS  Google Scholar 

  15. Sasaguri, S., Maruyama, J., Moriya, S., et al. (2008). Applied Microbiology, 54, 343–351.

    Article  CAS  Google Scholar 

  16. Inoue, T., Murashima, K., Azuma, J.-I., et al. (1997). Journal of Insect Physiology, 43, 235–242. doi:10.1016/S0022-1910(96)00097-2.

    Article  CAS  Google Scholar 

  17. McIlvaine, T. C. (1921). The Journal of Biological Chemistry, 49, 183–186.

    CAS  Google Scholar 

  18. Ståhlberg, J., Divne, C., Koivula, A., et al. (1996). Journal of Molecular Biology, 264, 337–349. doi:10.1006/jmbi.1996.0644.

    Article  Google Scholar 

  19. Henrissat, B. (1991). The Biochemical Journal, 280, 309–316.

    CAS  Google Scholar 

  20. Henrissat, B., & Bairoch, A. (1996). The Biochemical Journal, 316, 695–696.

    Google Scholar 

  21. Divne, C., Ståhlberg, J., Teeri, T. T., et al. (1998). Journal of Molecular Biology, 275, 309–325. doi:10.1006/jmbi.1997.1437.

    Article  CAS  Google Scholar 

  22. Kleywegt, G. J., Zou, J. Y., Divne, C., et al. (1997). Journal of Molecular Biology, 272, 383–397. doi:10.1006/jmbi.1997.1243.

    Article  CAS  Google Scholar 

  23. Ward, M., Lin, C., Victoria, D. C., et al. (2004). Applied and Environmental Microbiology, 70, 2567–2576. doi:10.1128/AEM.70.5.2567-2576.2004.

    Article  CAS  Google Scholar 

  24. Van Ardell, J. N., Kwok, S., Schweickart, V. L., et al. (1987). Biotechnology, 5, 60–64. doi:10.1038/nbt0187-60.

    Article  Google Scholar 

  25. Kitamoto, N., Go, M., Shibayama, T., et al. (1996). Applied Microbiology and Biotechnology, 46, 538–544. doi:10.1007/s002530050857.

    Article  CAS  Google Scholar 

  26. Kwon, I., Ekino, K., Got'o, M., et al. (1999). Bioscience, Biotechnology, and Biochemistry, 63, 1714–1720. doi:10.1271/bbb.63.1714.

    Article  CAS  Google Scholar 

  27. Okada, G., & Nishizawa, K. (1975). Journal of Biochemistry, 78, 297–306.

    CAS  Google Scholar 

  28. Okada, G. (1976). Journal of Biochemistry, 80, 913–922.

    CAS  Google Scholar 

  29. Fierobe, H. P., Gaudin, C., Belaich, A., et al. (1991). Journal of Bacteriology, 173, 7956–7962.

    CAS  Google Scholar 

  30. Fierobe, H. P., Bagnara-Tardif, C., Gaudin, C., et al. (1993). European Journal of Biochemistry, 217, 557–565. doi:10.1111/j.1432-1033.1993.tb18277.x.

    Article  CAS  Google Scholar 

  31. Scrivener, A. M., & Slaytor, M. (1994). Insect Biochemistry and Molecular Biology, 24, 223–231. doi:10.1016/0965-1748(94)90001-9.

    Article  CAS  Google Scholar 

  32. Watanabe, H., Nakamura, M., Tokuda, G., et al. (1997). Insect Biochemistry and Molecular Biology, I, 305–313. doi:10.1016/S0965-1748(97)00003-9.

    Article  Google Scholar 

  33. Lynd, L. R., Weimer, P. J., van Zyl, W. H., et al. (2002). Microbiology and Molecular Biology Reviews, 66, 506–577. doi:10.1128/MMBR.66.3.506-577.2002.

    Article  CAS  Google Scholar 

  34. Qi, Meng, Jun, H., & Forsberg, C. W. (2008). The Journal of Bacteriology, 190, 1976–1984. doi:10.1128/JB.01667-07.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partly supported by the New Energy and Industrial Technology Development Organization (NEDO) program for the development of elemental technology for bioenergy conversion. Partial support was also provided by the Eco-molecular Research Program (RIKEN), the Bio-architect Research Program (RIKEN), and the Program for the Promotion of Basic Research Activity for Innovative Biosciences (PROBRAIN). The work described here was conducted as part of a series of studies under the 2005–2006 UNESCO Postgraduate Inter-university Training Course in Biotechnology sponsored by the Japanese Ministry of Education, Culture, Sports, Science and Technology and the Japanese National Commission for UNESCO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeharu Moriya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todaka, N., Lopez, C.M., Inoue, T. et al. Heterologous Expression and Characterization of an Endoglucanase from a Symbiotic Protist of the Lower Termite, Reticulitermes speratus . Appl Biochem Biotechnol 160, 1168–1178 (2010). https://doi.org/10.1007/s12010-009-8626-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8626-8

Keywords

Navigation