Skip to main content
Log in

Production, Purification, and Characterization of a Cellulase-Free Thermostable Endo-xylanase from Thermoanaerobacterium thermosaccharolyticum DSM 571

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This is the first report describing the cloning, expression, and characterization of a putative thermostable, cellulase-free xylanase (XYN) from the thermophilic bacterium Thermoanaerobacterium thermosaccharolyticum DSM 571. The temperature and pH values for optimal enzyme activity of XYN were found to be 65 °C and pH 6.5, respectively. The XYN activity was apparently enhanced by Co2+, Mn2+, and Tween 60 and significantly inactivated by Al3+, Cu2+, Zn2+, and SDS. The K m and V max values of XYN for the hydrolysis of beechwood xylan were 2.1 mg/ml and 222.1 U/mg, respectively. The k cat values of XYN for beechwood xylan at the optimal temperature and pH values were 481.4 s−1. XYN represents an attractive candidate for use in the large-scale production of xylooligosaccharides (XOs) from forest residues because it is an endo-xylanase capable of degrading xylan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beg, Q., Kapoor, M., Mahajan, L., & Hoondal, G. (2001). Microbial xylanases and their industrial applications: a review. Applied Microbiology and Biotechnology, 56, 326–338.

    Article  CAS  Google Scholar 

  2. Chapla, D., Patel, H., Singh, A., Madamwar, D., & Shah, A. (2011). Production, purification and properties of a cellulase-free thermostable endoxylanase from newly isolated Paenibacillus sp. ASCD2. Annals of Microbiology, 62, 825–834.

    Article  Google Scholar 

  3. Biely, P. (1985). Microbial xylanolytic systems. Trends in Biotechnology, 3, 286–290.

    Article  CAS  Google Scholar 

  4. Dhiman, S. S., Sharma, J., & Battan, B. (2008). Industrial applications and future prospects of microbial xylannases: a review. BioResources, 3, 1377–1402.

    Google Scholar 

  5. Collins, T., Gerday, C., & Feller, G. (2005). Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology Reviews, 29, 3–23.

    Article  CAS  Google Scholar 

  6. Menon, V., Prakash, G., Prabhune, A., & Rao, M. (2010). Biocatalytic approach for the utilization of hemicellulose for ethanol production from agricultural residue using thermostable xylanase and thermotolerant yeast. Bioresource Technology, 101, 5366–5373.

    Article  CAS  Google Scholar 

  7. Yang, C. H., Yang, S. F., & Liu, W. H. (2007). Production of xylooligosaccharides from xylans by extracellular xylanases from Thermobifida fusca. Journal of Agricultural and Food Chemistry, 55, 3955–3959.

    Article  CAS  Google Scholar 

  8. Archer, S. Y., Meng, S., Shei, A., & Hodin, R. A. (1998). p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 95, 6791–6796.

    Article  CAS  Google Scholar 

  9. Mukund, G., Asawari, P., Anjani, J., & Digambar, V. (2009). Cellulases from Penicilium Janthinellum mutants: solid-state production and their stability in ionic liquids. BioResources, 4, 1670–1681.

    Google Scholar 

  10. Vazquez, M., Alonso, J., Dominguez, H., & Parajo, J. (2000). Xylooligosaccharides: manufacture and applications. Trends in Food Science & Technology, 11, 387–393.

    Article  CAS  Google Scholar 

  11. van den Burg, B. (2003). Extremophiles as a source for novel enzymes. Current Opinion in Microbiology, 6, 213–218.

    Article  Google Scholar 

  12. Haki, G., & Rakshit, S. (2003). Developments in industrially important thermostable enzymes: a review. Bioresource Technology, 89, 17–34.

    Article  CAS  Google Scholar 

  13. Becker, P., Abu-Reesh, I., Markossian, S., Antranikian, G., & Märkl, H. (1997). Determination of the kinetic parameters during continuous cultivation of the lipase-producing thermophile Bacillus sp. Applied Microbiology and Biotechnology, 48, 184–190.

    Article  CAS  Google Scholar 

  14. Chimtong, S., Tachaapaikoon, C., Pason, P., Kyu, K. L., Kosugi, A., Mori, Y., & Ratanakhanokchai, K. (2011). Isolation and characterization of endocellulase-free multienzyme complex from newly isolated Thermoanaerobacterium thermosaccharolyticum strain NOI-1. Journal of Microbiology and Biotechnology, 21, 284–292.

    CAS  Google Scholar 

  15. Techapun, C., Poosaran, N., Watanabe, M., & Sasaki, K. (2003). Thermostable and alkaline-tolerant microbial cellulase-free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching bioprocesses: a review. Process Biochemistry, 38, 1327–1340.

    Article  CAS  Google Scholar 

  16. Najmudin, S., Pinheiro, B. A., Romão, M. J., Prates, J. A., & Fontes, C. M. (2008). Purification, crystallization and crystallographic analysis of Clostridium thermocellum endo-1,4-β-d-xylanase 10B in complex with xylohexaose. Acta Crystallographica Section F, 64, 715–718.

    Article  CAS  Google Scholar 

  17. Najmudin, S., Pinheiro, B. A., Prates, J. A. M., Gilbert, H. J., Romão, M. J., & Fontes, C. M. G. A. (2010). Putting an N-terminal end to the Clostridium thermocellum xylanase Xyn10B story: Crystal structure of the CBM22-1–GH10 modules complexed with xylohexaose. Journal of Structural Biology, 172, 353–362.

    Article  CAS  Google Scholar 

  18. Hung, K. S., Liu, S. M., Fang, T. Y., Tzou, W. H., Lin, F. P., Sun, K. H., & Tang, S. J. (2011). Characterization of a salt-tolerant xylanase from Thermoanaerobacterium saccharolyticum NTOU1. Biotechnology Letters, 33, 1441–1447.

    Article  CAS  Google Scholar 

  19. Mesnage, S., Fontaine, T., Mignot, T., Delepierre, M., Mock, M., & Fouet, A. (2000). Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO Journal, 19, 4473–4484.

    Article  CAS  Google Scholar 

  20. Shi, H., Zhang, Y., Li, X., Huang, Y., Wang, L., Wang, Y., Ding, H., & Wang, F. (2013). A novel highly thermostable xylanase stimulated by Ca2+ from Thermotoga thermarum: cloning, expression and characterization. Biotechnology for Biofuels, 6, 26.

    Article  CAS  Google Scholar 

  21. Cesar, T., & Mrša, V. (1996). Purification and properties of the xylanase produced by Thermomyces lanuginosus. Enzyme and Microbial Technology, 19, 289–296.

    Article  CAS  Google Scholar 

  22. Faulet, B. M., Niamké, S., Gonnety, J. T., & Kouame, L. P. (2006). Purification and biochemical characteristics of a new strictly specific endoxylanase from termite Macrotermes subhyalinus workers. Bulletin of Insectology, 59, 17–26.

    Google Scholar 

  23. Chinedu, S. N., Nwinyi, O., Okafor, U. A., & Okochi, V. I. (2011). Kinetic study and characterization of 1, 4-β-endoglucanase of Aspergillus niger ANL301. Dynamic Biochemistry, Process Biotechnology and Molecular Biology, 5, 41–46.

    Google Scholar 

  24. Freiberg, C., Fellay, R., Bairoch, A., Broughton, W. J., Rosenthal, A., & Perret, X. (1997). Molecular basis of symbiosis between Rhizobium and legumes. Nature, 387, 394–401.

    Article  CAS  Google Scholar 

  25. Mishira, C., Semino, C. E., McCreath, K. J., De la Vega, H., Jones, B. J., Specht, C. A., & Robbins, P. W. (1997). Cloning and expression of two chitin deacetylase genes of Saccharomyces cerevisiae. Yeast, 13, 327–336.

    Article  Google Scholar 

  26. Winterhalter, C., Heinrich, P., Candussio, A., Wich, G., & Liebl, W. (1995). Identification of a novel cellulose-binding domain within the multidomain 120 kDa xylanase XynA of the hyperthermophilic bacterium Thermotoga maritima. Molecular Microbiology, 15, 431–444.

    Article  CAS  Google Scholar 

  27. Wassenberg, D., Schurig, H., Jaenicke, R., & Liebl, W. (1997). Xylanase XynA from the hyperthermophilic bacterium Thermotoga maritima: Structure and stability of the recombinant enzyme and its isolated cellulose-binding domain. Protein Science, 6, 1718–1726.

    Article  CAS  Google Scholar 

  28. Verma, D., & Satyanarayana, T. (2012). Cloning, expression and applicability of thermo-alkali-stable xylanase of Geobacillus thermoleovorans in generating xylooligosaccharides from agro-residues. Bioresource Technology, 107, 333–338.

    Article  CAS  Google Scholar 

  29. Jiang, Z. Q., Deng, W., Zhu, Y. P., Li, L. T., Sheng, Y. J., & Hayashi, K. (2004). The recombinant xylanase B of Thermotoga maritima is highly xylan specific and produces exclusively xylobiose from xylans, a unique character for industrial applications. Journal of Molecular Catalysis B: Enzymatic, 27, 207–213.

    Article  CAS  Google Scholar 

  30. Jiang, Z., Deng, W., Li, X., Ai, Z., Li, L., & Kusakabe, I. (2005). Characterization of a novel, ultra-large xylanolytic complex (xylanosome) from Streptomyces olivaceoviridis E-86. Enzyme and Microbial Technology, 36, 923–929.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the State Forestry Administration 948 Program (no. 2014-4-37), the National Natural Science Foundation of China (31370572, 31270612), and the Doctorate Fellowship Foundation of Nanjing Forestry University as well as the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Wang.

Additional information

Xun Li and Hao Shi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Shi, H., Ding, H. et al. Production, Purification, and Characterization of a Cellulase-Free Thermostable Endo-xylanase from Thermoanaerobacterium thermosaccharolyticum DSM 571. Appl Biochem Biotechnol 174, 2392–2402 (2014). https://doi.org/10.1007/s12010-014-1135-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1135-4

Keywords

Navigation