Skip to main content
Log in

Biophysical and Biochemical Characterization of a Hyperthermostable and Ca2+-independent α-Amylase of an Extreme Thermophile Geobacillus thermoleovorans

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

α-Amylases reported from various microbial sources have been shown to be moderately thermostable and Ca2+ dependent. The bacterial strain used in this investigation is an extremely thermophilic bacterium Geobacillus thermoleovorans that produces a novel α-amylase (26 kDa; α-amylase gt), which is hyperthermostable (T opt 100 °C) and does not require Ca2+ for its activity/stability. These special features of α-amylase gt make it applicable in starch saccharification process. The structural aspects of α-amylase gt are, therefore, of significant interest to understand its structure–function relationship. The circular dichroism spectroscopic data revealed the native α-amylase gt to contain 25% α-helix, 21% β-sheet, and 54% random coils. The addition of urea, at high concentration (8 M), appeared to expose the buried Trp residues of the native α-amylase gt to the aqueous environment and thus showed low fluorophore. Fluorescence-quenching experiments using KI, CsCl, N-bromosuccinimide, and acrylamide revealed interesting features of the tryptophan microenvironment. Analysis of K sv and f a values of KI, CsCl, and acrylamide suggested the overall Trp microenvironment in α-amylase to be slightly electropositive. Fluorescence-quenching studies with acrylamide revealed the occurrence of both collisional as well as static quenching processes. There was no change in the α-helix content or the enzyme activity with an increase in temperature (60–100 °C) that suggested a critical role of the α-helix content in maintaining the catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Leuschner, C., & Antranikian, G. (1995). World Journal of Microbiology & Biotechnology, 11, 95–114.

    Article  CAS  Google Scholar 

  2. Sunna, A., Moracci, M., Rossi, M., & Antranikian, G. (1997). Extremophiles, 1, 12–13.

    Article  Google Scholar 

  3. Schwerdtfeger, R. M., Chiaraluce, R., Consalvi, V., Scandurra, R., & Antranikian, G. (1999). European Journal of Biochemistry, 264, 479–487.

    Article  CAS  Google Scholar 

  4. Sajedi, R. H., Manesh, H. N., Khajeh, K., Ranjbar, B., Ghaemi, N., & Manesh, M. N. (2004). Applied Biochemistry and Biotechnology, 119, 41–50.

    Article  CAS  Google Scholar 

  5. Antranikian, G. (1992). Microbial degradation of starch. In G. Winkelmann (Ed.) Microbial degradation of natural products (pp. 27–51). Weinheim, Germany: VCH.

    Google Scholar 

  6. Pandey, A., Nigam, P., Soccol, C. R., Soccol, V. T., Singh, D., & Mohan, R. (2000). Biotechnology and Applied Biochemistry, 1, 135–152.

    Article  Google Scholar 

  7. Dey, G., Mitra, A., Banerjee, R., & Maiti, B. R. (2001). Biochemical Engineering Journal, 7, 227–231.

    Article  CAS  Google Scholar 

  8. Van der Maarel, M. J. E. C., Van der Veen, B., Uitdehaag, J. C. M., Leemhuis, H., & Dijhuizen, L. (2002). Journal of Biotechnology, 94, 137–155.

    Article  Google Scholar 

  9. Uma Maheswar Rao, J. L., & Satyanarayana, T. (2003a). Letters in Applied Microbiology, 36, 191–196.

    CAS  Google Scholar 

  10. Uma Maheswar Rao, J. L., & Satyanarayana, T. (2007). Applied Biochemistry and Biotechnology, 142, 179–193.

    Article  CAS  Google Scholar 

  11. Uma Maheswar Rao, J. L., & Satyanarayana, T. (2004a). Journal of Applied Microbiology, 97, 1015–1020.

    Article  CAS  Google Scholar 

  12. Uma Maheswar Rao, J. L., & Satyanarayana, T. (2004b). Indian Journal of Microbiology, 44, 281–284.

    Google Scholar 

  13. Satyanarayana, T., Noorwez, S. M., Kumar, S., Rao, J. L. U. M., Ezhilvannan, M., & Kaur, P. (2004). Biochemical Society Transactions, 32, 276–278.

    Article  CAS  Google Scholar 

  14. Declerck, N., Machius, M., Chamber, R., Wiegand, G., Huber, R., & Gaillardin, C. (1997). Protein Engineering, 10, 541–549.

    Article  CAS  Google Scholar 

  15. Rao, M. V. R., Atreyi, M., & Rajeswari, M. R. (1984). Journal of Biosciences, 6, 823–828.

    Article  CAS  Google Scholar 

  16. Matsuura, Y., Kusunoki, M., Harada, W., & Kakudo, M. (1984). American Journal of Biochemistry, 95, 697–702.

    CAS  Google Scholar 

  17. Bandivadekar, K. R., & Deshpande, V. V. (1996). Biochemical Journal, 315, 583–587.

    CAS  Google Scholar 

  18. Spande, T. F., & Witkop, B. (1967). Methods in Enzymology, 11, 498–506.

    Article  CAS  Google Scholar 

  19. Bernfeld, P. (1955). Amylases, a and b. In S. P. Colowick, & O. N. Kaplan (Eds.) Methods in enzymology (pp. 140–146). New York: Academic.

    Google Scholar 

  20. Bradford, M. A. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  21. Asouli, Y. B., Lidji, K., & Osman, F. (2004). American Biotechnology Laboratory, 2, 14–15.

    Google Scholar 

  22. Uma Maheswar Rao, J. L., & Satyanarayana, T. (2007). Bioresource Technology, 98, 345–352.

    Article  CAS  Google Scholar 

  23. Koch, R., Zablowski, P., Spreinat, A., & Antranikian, G. (1990). FEMS Microbiology Letters, 71, 21–26.

    Article  CAS  Google Scholar 

  24. Koch, R. A., Lemka, K., & Antranikian, G. (1991). Letters in Applied Microbiology, 31, 378–384.

    Google Scholar 

  25. Brzozowski, A. M., Lawson, D. M., Turkenburg, J. P., Bisgaard-Frantzen, H., Svendsen, A., Borchert, T. V., et al. (2000). Biochemist, 39, 9099–9107.

    Article  CAS  Google Scholar 

  26. Gao, S., An, J., Wu, C. F., Gu, Y., Chen, F., Yu, Y., et al. (2005). Acta Biochimica et Biophysica Sinica, 37, 47–54.

    Article  CAS  Google Scholar 

  27. Eftink, M. R., & Ghiron, C. A. (1981). Analytical Biochemistry, 114, 199–227.

    Article  CAS  Google Scholar 

  28. Ghatge, M. S., & Deshpande, V. V. (1993). Biochemical and Biophysical Research Communications, 193, 979–984.

    Article  CAS  Google Scholar 

  29. Igarashi, K., Hatada, Y., Hagihara, H., Saeki, K., Takaiwa, M., Uemura, T., et al. (1998). Applied and Environmental Microbiology, 64, 3282–3289.

    CAS  Google Scholar 

  30. Hamilton, L. M., Kelly, C. T., & Fogarty, W. M. (1999). Biotechnology Letters, 21, 111–115.

    Article  CAS  Google Scholar 

  31. Kuriki, T., Yanase, M., Takata, H., Takesada, Y., Imanaka, T., & Okada, S. (1993). Applied and Environmental Microbiology, 59, 953–959.

    CAS  Google Scholar 

  32. Pattnaik, B. R., Ghosh, S., & Rajeswari, R. (1997). Biochemistry and Molecular Biology International, 42, 173–181.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. M.R. Rajeswari, Ms. S. Akanchha, and Mr. J. Vashist (Department of Biochemistry, All India Institute of Medical Sciences, New Delhi) for their help in carrying out the fluorescence spectroscopy and CD experiments and analysis of the data and critically going through the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Satyanarayana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uma Maheswar Rao, J.L., Satyanarayana, T. Biophysical and Biochemical Characterization of a Hyperthermostable and Ca2+-independent α-Amylase of an Extreme Thermophile Geobacillus thermoleovorans . Appl Biochem Biotechnol 150, 205–219 (2008). https://doi.org/10.1007/s12010-008-8171-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8171-x

Keywords

Navigation