Skip to main content
Log in

The hyperthermophilic α-amylase from Thermococcus sp. HJ21 does not require exogenous calcium for thermostability because of high-binding affinity to calcium

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The hyperthermophilic α-amylase from Thermococcus sp. HJ21 does not require exogenous calcium ions for thermostability, and is a promising alternative to commercially available α-amylases to increase the efficiency of industrial processes like the liquefaction of starch. We analyzed the amino acid sequence of this α-amylase by sequence alignments and structural modeling, and found that this α-amylase closely resembles the α-amylase from Pyrococcus woesei. The gene of this α-amylase was cloned in Escherichia coli and the recombinant α-amylase was overexpressed and purified with a combined renaturation-purification procedure. We confirmed thermostability and exogenous calcium ion independency of the recombinant α-amylase and further investigated the mechanism of the independency using biochemical approaches. The results suggested that the α-amylase has a high calcium ion binding affinity that traps a calcium ion that would not dissociate at high temperatures, providing a direct explanation as to why the addition of calcium ions is not required for thermostability. Understanding of the mechanism offers a strong base on which to further engineer properties of this α-amylase for better potential applications in industrial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chai, K.P., Othman, N.F., Teh, A.H., Ho, K.L., Chan, K.G., Shamsir, M.S., Goh, K.M., and Ng, C.L. 2016. Crystal structure of Anoxybacillus α-amylase provides insights into maltose binding of a new glycosyl hydrolase subclass. Sci. Rep. 6, 23126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, K.H., Hwang, S., Lee, H.S., and Cha, J. 2011. Identification of an extracellular thermostable glycosyl hydrolase family 13 α-amylase from Thermotoga neapolitana. J. Microbiol. 49, 628–634.

    Article  CAS  PubMed  Google Scholar 

  • Chung, Y.C., Kobayashi, T., Kanai, H., Akiba, T., and Kudo, T. 1995. Purification and properties of extracellular amylase from the hyperthermophilic archaeon Thermococcus profundus DT5432. Appl. Environ. Microbiol. 61, 1502–1506.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies, G. and Henrissat, B. 1995. Structures and mechanisms of glycosyl hydrolases. Structure 3, 853–859.

    Article  CAS  PubMed  Google Scholar 

  • Deb, P., Talukdar, S.A., Mohsina, K., Sarker, P.K., and Sayem, S.A. 2013. Production and partial characterization of extracellular amylase enzyme from Bacillus amyloliquefaciens P-001. SpringerPlus 2, 154.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong, G.Q., Vieille, C., Savchenko, A., and Zeikus, J.G. 1997. Cloning, sequencing, and expression of the gene encoding α-amylase from Pyrococcus furiosis and biochemical characterisation of the recombinant enzyme. Appl. Environ. Microbiol. 63, 3569–3576.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta, R., Gigras, P., Mohapatra, H., Goswami, V.K., and Chauhan, B. 2003. Microbial α-amylases. a biotechnological perspective. Process Biochem. 38, 1599–1616.

    Article  CAS  Google Scholar 

  • Johnson, K.A. 2013. A century of enzyme kinetic analysis, 1913 to 2013. FEBS Lett. 587, 2753–2766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamitori, S., Abe, A., Ohtaki, A., Kaji, A., Tonozuka, T., and Sakano, Y. 2002. Crystal structures and structural comparison of Thermoactinomyces vulgaris R-47 alpha-amylase 1 (TVAI) at 1.6 A resolution and alpha-amylase 2 (TVAII) at 2.3 A resolution. J. Mol. Biol. 318, 443–453.

    Article  CAS  PubMed  Google Scholar 

  • Koch, R., Spreinat, A., Lemke, K., and Antranikian, G. 1991. Purification and properties of a hyperthermoactive α-amylase from the archaeobacterium Pyrococcus woesei. Arch. Microbiol. 155, 572–578.

    Article  CAS  Google Scholar 

  • Leveque, E., Haye, B., and Belarbi, A. 2000. Cloning and expression of an alpha-amylase encoding gene from the hyperthermophilic archaebacterium Thermococcus hydrothermalis and biochemical characterisation of the recombinant enzyme. FEMS Microbiol. Lett. 186, 67–71.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Duan, X., and Wu, J. 2016. Improving the thermostability and enhancing the Ca2+ binding of the maltohexaose-forming alpha-amylase from Bacillus stearothermophilus. J. Biotechnol. 222, 65–72.

    Article  CAS  PubMed  Google Scholar 

  • Linden, A., Mayans, O., Meyer-Klaucke, W., Antranikian, G., and Wilmanns, M. 2003. Differential regulation of a hyperthermophilic alpha-amylase with a novel (Ca,Zn) two-metal center by zinc. J. Biol. Chem. 278, 9875–9884.

    Article  CAS  PubMed  Google Scholar 

  • Linden, A., Niehaus, F., and Antranikian, G. 2000. Single-step purification of a recombinant thermostable α-amylase after solubilization of the enzyme from insoluble aggregates. J. Chromatogr. B 737, 253–259.

    Article  CAS  Google Scholar 

  • Machius, M., Declerck, N., Huber, R., and Wiegand, G. 1998. Activation of Bacillus licheniformis α-amylase through a disorder → order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad. Structure 6, 281–292.

    Article  CAS  PubMed  Google Scholar 

  • Marti-Renom, M.A., Stuart, A.C., Fiser, A., Sanchez, R., Melo, F., and Sali, A. 2000. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29, 291–325.

    Article  CAS  PubMed  Google Scholar 

  • Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428.

    Article  CAS  Google Scholar 

  • Pujadas, G. and Palau, J. 2001. Evolution of alpha-amylases: architectural features and key residues in the stabilization of the (ß/a)8 scaffold. Mol. Biol. Evol. 18, 38–54.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, T.H., Tan, X., Frey, G., Callen, W., Cabell, M., Lam, D., Macomber, J., Short, J.M., Robertson, D.E., and Miller, C. 2002. A novel, high performance enzyme for starch liquefaction. Discovery and optimization of a low pH, thermostable α-amylase. J. Biol. Chem. 277, 26501–26507.

    Article  CAS  PubMed  Google Scholar 

  • Savchenko, A., Vieille, C., Kang, S., and Zeikus, J.G. 2002. Pyrococcus furiosus alpha-amylase is stabilized by calcium and zinc. Biochemistry 41, 6193–6201.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, A. and Satyanarayana, T. 2012. Cloning and expression of acidstable, high maltose-forming, Ca2+-independent α-amylase from an acidophile Bacillus acidicola and its applicability in starch hydrolysis. Extremophiles 16, 515–522.

    Article  CAS  PubMed  Google Scholar 

  • Vieille, C. and Zeikus, G.J. 2001. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65, 1–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Violet, M. and Meunier, J.C. 1989. Kinetic study of the irreversible thermal denaturation of Bacillus licheniformis α-amylase. Biochem. J. 263, 665–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, S., Lu, Z., Lu, M., Qin, S., Liu, H., Deng, X., Lin, Q., and Chen, J. 2008. Identification of archaeon-producing hyperthermophilic α-amylase and characterization of the α-amylase. Appl. Microbiol. Biotechnol. 80, 605–614.

    Article  CAS  PubMed  Google Scholar 

  • Ying, Q., Zhang, C., Guo, F., Wang, S., Bie, X., Lu, F., and Lu, Z. 2012. Secreted expression of a hyperthermophilic alpha-amylase gene from Thermococcus sp. HJ21 in Bacillus subtilis. J. Mol. Microbiol. Biotechnol. 22, 392–398.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Song Gao or Shujun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, H., Luo, Z., Lu, M. et al. The hyperthermophilic α-amylase from Thermococcus sp. HJ21 does not require exogenous calcium for thermostability because of high-binding affinity to calcium. J Microbiol. 55, 379–387 (2017). https://doi.org/10.1007/s12275-017-6416-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-017-6416-5

Keywords

Navigation