Skip to main content
Log in

Purification and Characterization of a Hyperthermostable and High Maltogenic α-Amylase of an Extreme Thermophile Geobacillus thermoleovorans

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The purified α-amylase of Geobacillus thermoleovorans had a molecular mass of 26 kDa with a pI of 5.4, and it was optimally active at 100 °C and pH 8.0. The T 1/2 of α-amylase at 100 °C increased from 3.6 to 5.6 h in the presence of cholic acid. The activation energy and temperature quotient (Q 10) of the enzyme were 84.10 kJ/mol and 1.31, respectively. The activity of the enzyme was enhanced strongly by Co2+ and Fe2+; enhanced slightly by Ba2+, Mn2+, Ni2+, and Mg2+; inhibited strongly by Sn2+, Hg2+, and Pb2+, and inhibited slightly by EDTA, phenyl methyl sulfonyl fluoride, N-ethylmaleimide, and dithiothreitol. The enzyme activity was not affected by Ca2+ and ethylene glycol-bis (β-amino ethyl ether)-N,N,N,N-tetra acetic acid. Among different additives and detergents, polyethylene glycol 8000 and Tween 20, 40, and 80 stabilized the enzyme activity, whereas Triton X-100, glycerol, glycine, dextrin, and sodium dodecyl sulfate inhibited to a varied extent. α-Amylase exhibited activity on several starch substrates and their derivatives. The K m and K cat values (soluble starch) were 1.10 mg/ml and 5.9 × 103 /min, respectively. The enzyme hydrolyzed raw starch of pearl millet (Pennisetum typhoides) efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Antranikian, G. (1992). In G. Winkelmann (Ed.), Microbial Degredation of Natural Products (pp. 27–56). Germany: Weinheim, VCH.

  2. Vihinen, M., & Mantsala, P. (1989). Critical Reviews in Biochemistry and Molecular Biology, 24, 329–418.

    CAS  Google Scholar 

  3. Jensen, B., & Olsen, J. (1999). In B. N. Johri, T. Satyanarayana & J. Olsen, (Eds.), Thermophilic Moulds in Biotechnology (pp. 115–137). Netherlands: Kluwer Academic Publishers.

  4. Pandey, A., & Ramachandran, S. (2005). In A. Pandey, C. Webb, C. R. Soccol, & C. Larroche (Eds.), Enzyme Technology (pp. 1–10). New Delhi: Asiatech Publishers Inc.

  5. Crabb, W. D., & Mitchinson, C. (1997). Trends in Biotechnology, 15, 349–352.

    Article  CAS  Google Scholar 

  6. Rivera, M. H., Lopez-Munguia, A., Soberon, X., & Saab-Rincon, G. (2003). Protein Engineering, 16, 505–514.

    Article  CAS  Google Scholar 

  7. Niehaus, F., Bertolldo, C., Kahler, M., & Antranikian, G. (1999). Applied Microbiology and Biotechnology, 51, 711–729.

    Article  CAS  Google Scholar 

  8. Kumar, S., & Satyanarayana, T. (2003). Biotechnology Progress, 19, 936–944.

    Article  CAS  Google Scholar 

  9. Malhotra, R., Noorwez, S. M., & Satyanarayana, T. (2000). Letters in Applied Microbiology, 31, 378–384.

    Article  CAS  Google Scholar 

  10. Uma Maheswar Rao, J. L., & Satyanarayana, T. (2003). Letters in Applied Microbiology, 36, 191–196.

    CAS  Google Scholar 

  11. Uma Maheswar Rao, J. L., & Satyanarayana, T. (2003). Journal of Applied Microbiology, 95, 712–718.

    Article  CAS  Google Scholar 

  12. Uma Maheswar Rao, J. L., & Satyanarayana, T. (2007). Bioresource Technology, 98, 345–352.

    Article  CAS  Google Scholar 

  13. Narang, S., & Satyanarayana, T. (2001). Letters in Applied Microbiology, 32, 31–35.

    Article  CAS  Google Scholar 

  14. Bernfield, P. (1955). Methods in Enzymology, 1, 149–158.

    Article  Google Scholar 

  15. Lowry, O. W., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  16. Kanlayakrit, W., Ishimatsu, K., Nakkao, M., & Vayashida, S. (1987). Journal of Fermentation Technology, 65, 370–385.

    Article  Google Scholar 

  17. Brink, R. H., Dubach, P., & Lynch, D. L. (1960). Soil Science, 89, 157–166.

    Article  CAS  Google Scholar 

  18. Mishra, R., & Maheshwari, R. (1995). Journal of Biosciences, 21, 653–672.

    Article  Google Scholar 

  19. Bose, K., & Das, D. (1996). Indian Journal of Experimental Biology, 34, 1279–1282.

    CAS  Google Scholar 

  20. Krishnan, T., & Chandra, A. K. (1983). Applied and Environmental Microbiology, 46, 430–437.

    CAS  Google Scholar 

  21. Yamamoto, M., Tanaka, Y., & Horikoshi, K. (1972). Agricultural and Biological Chemistry, 36, 1819–1823.

    CAS  Google Scholar 

  22. Fogarty, W. M., & Kelly, C. T. (1979). Progress in Industrial Microbiology, 15, 87–150.

    CAS  Google Scholar 

  23. Lin, L. L., Chyau, C. C., & Hsu, W. H. (1998). Biotechnology and Applied Biochemistry, 28, 61–68.

    CAS  Google Scholar 

  24. Robyt, J. F., & Ackerman, R. J. (1971). Archives of Biochemistry and Biophysics, 145, 105–114.

    Article  CAS  Google Scholar 

  25. Takasaki, Y. (1982). Agricultural and Biological Chemistry, 46, 1539–1547.

    CAS  Google Scholar 

  26. Dey, G., Palit, S., Banerjee, R., & Maiti, B. R. (2002). Journal of Industrial Microbiology & Biotechnology, 28, 193–200.

    Article  CAS  Google Scholar 

  27. Jana, M., Chattopadhyay, D. J., & Pati, B. R. (1997). Acta Microbiologica et Immunologica Hungarica, 44, 281–289.

    CAS  Google Scholar 

  28. Mamo, G., & Gessesse, A. (1999). Enzyme and Microbial Technology, 25, 433–438.

    Article  CAS  Google Scholar 

  29. Babu, K. R. (1994). Ph.D. thesis, University of Delhi, Delhi, India.

  30. Kanno, M. A. (1986). Agricultural and Biological Chemistry, 50, 23–31.

    CAS  Google Scholar 

  31. Tsvetkov, V. T., & Emanuilova, E. I. (1989). Applied Microbiology and Biotechnology, 31, 246–248.

    Article  CAS  Google Scholar 

  32. Quang, D. N., Rezessy-Szabo, J. M., Claeyssens, M., Stals, I., & Hoschke, A. (2002). Enzyme and Microbial Technology, 31, 345–352.

    Article  Google Scholar 

  33. Noorwez, S. M. (2000). Ph.D. thesis, University of Delhi, Delhi, India.

  34. Kapoor, M., Beg, Q. K., Bhushan, B., Dadhich, K. S., & Hoondal, G. S. (2000). Process Biochemistry, 36, 467–473.

    Article  CAS  Google Scholar 

  35. Klibanov, A. M. (2001). Nature, 409, 241–246.

    Article  CAS  Google Scholar 

  36. Shaw, J. F., Lin, F. P., Chen, S. C., & Chen, H. C. (2003). Botanica Bulletin of Academia Sinica, 36, 195–200.

    Google Scholar 

  37. Perez-Pomares, F., Bautista, V., Ferrer, J., Pir, C., Marhuendra-Egea, F. C., & Bonete, M. J. (2003). Extremophiles: Life Under Extreme Conditions, 7, 299–306.

    CAS  Google Scholar 

  38. Dey, S., & Agarwal, S. O. (1999). Indian Journal of Biochemistry & Biophysics, 36, 150–157.

    CAS  Google Scholar 

  39. Igarashi, K., Hatada, Y., Hagihara, H., Saeki, K., Takaiwak, M., Uemura, T., et al. (1998). Applied and Environmental Microbiology, 64, 3282–3289.

    CAS  Google Scholar 

  40. Mohapatra, B. R., Banerjee, U. C., & Bapuji, M. (1998). Journal of Biotechnology, 60, 113–117.

    Article  CAS  Google Scholar 

  41. Kundu, A. K., & Das, S. (1970). Applied Microbiology, 19, 598–603.

    CAS  Google Scholar 

  42. Eksteen, J. M., Steyn, A. J. C., Rensburg, P. V., & Otero, R. R. C. (2003). Yeast, 20, 69–78.

    Article  CAS  Google Scholar 

  43. Bolton, D. J., Kelly, C. T., & Fogarty, W. M. (1997). Enzyme and Microbial Technology, 20, 340–343.

    Article  CAS  Google Scholar 

  44. Rowe, G. E., & Margaritis, A. (2004). Biochemical Engineering Journal, 17, 121–128.

    Article  CAS  Google Scholar 

  45. Gubern, G., Canalias, F., Gella, F. J., Colinet, E., Profilis, C., Calam, H., et al. (1996). Clinica Chimica Acta, 252, 145–162.

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Mr. Pathania and Mr. Girish of All India Institute of Medical Sciences, New Delhi, India, for providing technical assistance in SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Satyanarayana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uma Maheswar Rao, J.L., Satyanarayana, T. Purification and Characterization of a Hyperthermostable and High Maltogenic α-Amylase of an Extreme Thermophile Geobacillus thermoleovorans . Appl Biochem Biotechnol 142, 179–193 (2007). https://doi.org/10.1007/s12010-007-0017-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-0017-4

Keywords

Navigation