Skip to main content
Log in

Hybrid sol–gel coatings for corrosion protection of galvanized steel in simulated concrete pore solution

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The aim of this experimental research was to study the electrochemical behavior of organic–inorganic hybrid (OIH) coatings for corrosion protection of hot-dip galvanized steel (HDGS) in the first instants of immersion in simulated concrete pore solution (SCPS) (pH > 12.5). The electrochemical performance of the OIH coatings was assessed by electrochemical impedance spectroscopy, potentiodynamic polarization curves, macrocell current density, and polarization resistance. The OIH coatings were prepared via the sol–gel method and were deposited on HDGS surfaces by dip-coating using one or three dip steps. The electrochemical results obtained for HDGS samples coated with OIH matrices in SCPS showed higher corrosion resistance than bare HDGS; as the molecular weight (MW) of Jeffamine® increased the barrier protection of the coating decreased. The lowest protection efficiency was found for HDGS samples synthesized with oligopolymers with an MW of 2000. Coatings produced with an oligopolymer of 230 MW conferred the highest protection. The surface morphology of the OIH coatings deposited on HDGS surfaces was studied by atomic force microscopy. The results show that the roughness of the OIH films depends on the MW of Jeffamine® and on the number of dip-coating steps used. Thermogravimetry results show that the Jeffamine® MW affected the thermal properties of the prepared OIH samples. The prepared OIH materials are thermally stable within the range of 20–80°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Porter, FC, Corrosion Resistance of Zinc and Zinc Alloys. CRC Press, Boca Raton, 1994

    Google Scholar 

  2. Yeomans SR, International Lead Zinc Research Organization, Galvanized steel reinforcement in concrete. Elsevier, Amsterdam, 2004

    Google Scholar 

  3. González, JA, Feliu, S, Rodriguez, P, et al., “Some Questions on the Corrosion of Steel in Concrete. Part II: Corrosion Mechanism and Monitoring.” Serv. Life Predict. Protect. Methods, 29 97–104 (1996)

    Google Scholar 

  4. Andrade, C, Reinforcement Corrosion : Research Needs, pp. 81–88. Taylor & Francis Group, London, 2009

    Google Scholar 

  5. Macías, A, Andrade, C, “Corrosion of Galvanized Steel in Dilute Ca(OH) 2 Solutions (pH 11.1–12.6).” Br. Corros. J., 22 162–171 (1987). doi:10.1179/000705987798271505

    Article  Google Scholar 

  6. Macías, A, Andrade, C, “Corrosion of Galvanized Steel Reinforcements in Alkaline Solutions: Part 1: Electrochemical Results.” Br. Corros. J., 22 113–118 (1987). doi:10.1179/000705987798271631

    Article  Google Scholar 

  7. Macías, A, Andrade, C, “The Behaviour of Galvanized Steel in Chloride-Containing Alkaline Solutions—I. The Influence of the Cation.” Corros. Sci., 30 393–407 (1990). doi:10.1016/0010-938X(90)90046-8

    Article  Google Scholar 

  8. Macías, A, Andrade, C, “Stability of the Calcium Hydroxizincate Protective Layer Developed on Galvanized Reinforcement After a Further Increase of the pH Value.” Mater Constr, 36 19–27 (1986)

    Article  Google Scholar 

  9. Montemor, MF, Simões, AM, Ferreira, MGS, “Composition and Behaviour of Cerium Films on Galvanised Steel.” Prog. Org. Coat., 43 274–281 (2001)

    Article  Google Scholar 

  10. Arenas, MA, Casado, C, Damborenea, JD, “Influence of the Conversion Coating on the Corrosion of Galvanized Reinforcing Steel.” Cem. Concr. Compos., 28 267–275 (2007). doi:10.1016/j.cemconcomp.2006.01.010

    Article  Google Scholar 

  11. Brinker, CJ, Scherer, GW, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic Press, Boston, 1990

    Google Scholar 

  12. Arkhireeva, A, Hay, JN, Lane, JM, et al., “Synthesis of Organic-Inorganic Hybrid Particles by Sol-Gel Chemistry.” J. Sol Gel Sci. Technol., 31 31–36 (2004)

    Article  Google Scholar 

  13. Zheludkevich, ML, Salvado, IM, Ferreira, MGS, “Sol-Gel Coatings for Corrosion Protection of Metals.” J. Mater. Chem., 15 5099 (2005). doi:10.1039/b419153f

    Article  Google Scholar 

  14. Figueira, RB, Silva, CJR, Pereira, EV, “Organic-Inorganic Hybrid Sol-Gel Coatings for Metal Corrosion Protection: A Review of Recent Progress.” J. Coat. Technol. Res., (2014). doi:10.1007/s11998-014-9595-6

    Google Scholar 

  15. Wankhede, RG, Morey, S, Khanna, AS, Birbilis, N, “Development of Water-Repellent Organic-Inorganic Hybrid Sol-Gel Coatings on Aluminum Using Short Chain Perfluoro Polymer Emulsion.” Appl. Surf. Sci., 283 1051–1059 (2013). doi:10.1016/j.apsusc.2013.07.066

    Article  Google Scholar 

  16. Zandi-zand, R, Ershad-langroudi, A, Rahimi, A, “Organic-Inorganic Hybrid Coatings for Corrosion Protection of 1050 Aluminum Alloy.” J Non Cryst Solids, 351 1307–1311 (2005). doi:10.1016/j.jnoncrysol.2005.02.022

    Article  Google Scholar 

  17. Carneiro, J, Tedim, J, Fernandes, SCM, et al., “Chitosan-Based Self-Healing Protective Coatings Doped with Cerium Nitrate for Corrosion Protection of Aluminum Alloy 2024.” Prog. Org. Coat., 75 8–13 (2012). doi:10.1016/j.porgcoat.2012.02.012

    Article  Google Scholar 

  18. Yasakau, KA, Zheludkevich, ML, Karavai, OV, Ferreira, MGS, “Influence of Inhibitor Addition on the Corrosion Protection Performance of Sol-Gel Coatings on AA2024.” Prog. Org. Coat., 63 352–361 (2008). doi:10.1016/j.porgcoat.2007.12.002

    Article  Google Scholar 

  19. Zheludkevich, ML, Serra, R, Montemor, MF, et al., “Corrosion Protective Properties of Nanostructured Sol-Gel Hybrid Coatings to AA2024-T3.” Surf. Coat. Technol., 200 3084–3094 (2006). doi:10.1016/j.surfcoat.2004.09.007

    Article  Google Scholar 

  20. Transactions ECS, Society TE, “Characterization of Hybrid Sol-Gel Coatings Doped with Hydrotalcite-like Compounds on Steel and Stainless Steel alloys.” ECS Trans., 47 195–206 (2013)

    Article  Google Scholar 

  21. Pepe, A, Galliano, P, Aparicio, M, et al., “Sol-Gel Coatings on Carbon Steel: Electrochemical Evaluation.” Surf. Coat. Technol., 200 3486–3491 (2006). doi:10.1016/j.surfcoat.2005.07.102

    Article  Google Scholar 

  22. Joncoux-Chabrol, K, Bonino, J-P, Gressier, M, et al., “Improvement of Barrier Properties of a Hybrid Sol-Gel Coating by Incorporation of Synthetic Talc-Like Phyllosilicates for Corrosion Protection of a Carbon Steel.” Surf. Coat. Technol., 206 2884–2891 (2012). doi:10.1016/j.surfcoat.2011.12.017

    Article  Google Scholar 

  23. Khramov, AN, Balbyshev, VN, Kasten, LS, Mantz, RA, “Sol-Gel Coatings with Phosphonate Functionalities for Surface Modification of Magnesium alloys.” Thin Solid Films, 514 174–181 (2006). doi:10.1016/j.tsf.2006.02.023

    Article  Google Scholar 

  24. Tan, ALK, Soutar, AM, Annergren, IF, Liu, YN, “Multilayer Sol-Gel Coatings for Corrosion Protection of Magnesium.” Surf. Coat. Technol., 198 478–482 (2005). doi:10.1016/j.surfcoat.2004.10.066

    Article  Google Scholar 

  25. Murillo-Gutiérrez, NV, Ansart, F, Bonino, J-P, et al., “Protection Against Corrosion of Magnesium Alloys with Both Conversion Layer and Sol-Gel Coating.” Surf. Coat. Technol., 232 606–615 (2013). doi:10.1016/j.surfcoat.2013.06.036

    Article  Google Scholar 

  26. Galio, AF, Lamaka, SV, Zheludkevich, ML, et al., “Inhibitor-Doped Sol-Gel Coatings for Corrosion Protection of Magnesium Alloy AZ31.” Surf. Coat. Technol., 204 1479–1486 (2010). doi:10.1016/j.surfcoat.2009.09.067

    Article  Google Scholar 

  27. Eliziane, M, Souza, PD, Ariza, E, et al., “Characterization of Organic-inorganic Hybrid Coatings for Corrosion Protection of Galvanized Steel and Electroplated ZnFe Steel 2. Experimental Procedure.” Mater. Res., 9 59–64 (2006)

    Article  Google Scholar 

  28. Yuan, W, van Ooij, WJ, “Characterization of Organofunctional Silane Films on Zinc Substrates.” J. Colloid Interface Sci., 185 197–209 (1997). doi:10.1006/jcis.1996.4604

    Article  Google Scholar 

  29. Figueira, RB, Silva, CJ, Pereira, EV, Salta, MM, “Ureasilicate Hybrid Coatings for Corrosion Protection of Galvanized Steel in Cementitious Media.” J. Electrochem. Soc., 160 C467–C479 (2013)

    Article  Google Scholar 

  30. Figueira, RB, Silva, CJ, Pereira, EV, Salta, MM, “Alcohol-Aminosilicate Hybrid Coatings for Corrosion Protection of Galvanized Steel in Mortar.” J. Electrochem. Soc., 161 C349–C362 (2014)

    Article  Google Scholar 

  31. Ghosh, SN, Cement and Concrete Science and Technology. Thomas Telford, London, 1991

    Google Scholar 

  32. Figueira, RB, Silva, CJR, Pereira, EV, “Influence of Experimental Parameters Using the Dip-Coating Method on the Barrier Performance of Hybrid Sol-Gel Coatings in Strong Alkaline Environments.” Coatings, 5 124–141 (2015). doi:10.3390/coatings5020124

    Article  Google Scholar 

  33. Figueira, RB, Silva, CJR, Pereira, EV, “Hybrid Sol-Gel Coatings for Corrosion Protection of Hot-Dip Galvanized Steel in Alkaline Medium.” Surf. Coat. Technol., 265 191–204 (2015). doi:10.1016/j.surfcoat.2015.01.034

    Article  Google Scholar 

  34. Sánchez, M, Alonso, MC, Cecílio, P, et al., “Electrochemical and analytical assessment of galvanized steel reinforcement pre-treated with Ce and La salts under alkaline media.” Cem. Concr. Compos., 28 256–266 (2006). doi:10.1016/j.cemconcomp.2006.01.004

    Article  Google Scholar 

  35. Recio, FJ, Alonso, MC, Gaillet, L, Sánchez, M, “Hydrogen Embrittlement Risk of High Strength Galvanized Steel in Contact with Alkaline Media.” Corros. Sci., 53 2853–2860 (2011). doi:10.1016/j.corsci.2011.05.023

    Article  Google Scholar 

  36. Lebrini, M, Fontaine, G, Gengembre, L, et al., “Corrosion Behaviour of Galvanized Steel and Electroplating Steel in Aqueous Solution: AC Impedance Study and XPS.” Appl. Surf. Sci., 254 6943–6947 (2008). doi:10.1016/j.apsusc.2008.04.112

    Article  Google Scholar 

  37. Mouanga, M, Puiggali, M, Tribollet, B, et al., “Galvanic Corrosion Between Zinc and Carbon Steel Investigated by Local Electrochemical Impedance Spectroscopy.” Electrochim. Acta, 88 6–14 (2013). doi:10.1016/j.electacta.2012.10.002

    Article  Google Scholar 

  38. E177-14, Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods, ASTM International, West Conshohocken, PA, www.astm.org, doi:10.1520/E0177-14 (2014)

  39. Figueira, RM, Pereira, EV, Silva, CJR, Salta, MM, “Corrosion Protection of Hot Dip Galvanized Steel in Mortar.” Port Electrochim. Acta, 31 277–287 (2013). doi:10.4152/pea.201305277

    Article  Google Scholar 

  40. G01 Committee, Test Method for Determining Effects of Chemical Admixtures on Corrosion of Embedded Steel Reinforcement in Concrete Exposed to Chloride Environments. ASTM International, West Conshohocken, 2007

    Google Scholar 

  41. Pereira, EV, Figueira, RB, Salta, MML, da Fonseca, ITE, “A Galvanic Sensor for Monitoring the Corrosion Condition of the Concrete Reinforcing Steel: Relationship Between the Galvanic and the Corrosion Currents.” Sensors, 9 8391–8398 (2009). doi:10.3390/s91108391

    Article  Google Scholar 

  42. Andrade, C, Castelo, V, Alonso, C, González, J, “The Determination of the Corrosion Rate of Steel Embedded in Concrete by the Polarization Resistance and AC Impedance Methods.” In: Chaker V (ed.) Corros. Eff. Stary Curr. Tech. Eval. Corros. Rebars Concr, pp. 43–43–21. ASTM International, West Conshohocken (1986)

  43. Pereira, EV, Salta, MM, Fonseca, ITE, “On the Measurement of the Polarisation Resistance of Reinforcing Steel with Embedded Sensors: A Comparative Study.” Mater. Corros., (2015). doi:10.1002/maco.201407910

    Google Scholar 

  44. Andrade, C, Alonso, C, “Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method.” Mater. Struct., 37 623–643 (2004). doi:10.1007/BF02483292

    Article  Google Scholar 

  45. Zheludkevich, ML, Yasakau, KA, et al., “On the application of electrochemical impedance spectroscopy to study the self-healing properties of protective coatings.” Electrochem. Commun., (2007). doi:10.1016/j.elecom.2007.08.012

    Google Scholar 

  46. Arthanareeswari, M, Narayanan, TSNS, Kamaraj, P, Tamilselvi, M, “Polarization and impedance studies on zinc phosphate coating developed using galvanic coupling.” J. Coat. Technol. Res., 9 39–46 (2012). doi:10.1007/s11998-011-9339-9

    Article  Google Scholar 

  47. Barsoukov, E, Macdonald, JR, Impedance Spectroscopy: Theory, Experiment, and Applications. Wiley, New York, 2005

    Book  Google Scholar 

  48. Orazem, ME, Tribollet, B, Electrochemical Impedance Spectroscopy. Wiley, New York, 2008

    Book  Google Scholar 

  49. Qian, M, Mcintosh Soutar, A, Tan, XH, et al., “Two-Part Epoxy-Siloxane Hybrid Corrosion Protection Coatings for Carbon Steel.” Thin Solid Films, 517 5237–5242 (2009). doi:10.1016/j.tsf.2009.03.114

    Article  Google Scholar 

  50. Morad, MS, “An Electrochemical Study on the Inhibiting Action of Some Organic Phosphonium Compounds on the Corrosion of Mild Steel in Aerated Acid Solutions.” Corros. Sci., 42 1307–1326 (2000). doi:10.1016/S0010-938X(99)00138-9

    Article  Google Scholar 

  51. Lebrini, M, Traisnel, M, Gengembre, L, et al., “Electrochemical Impedance Spectroscopy and X-ray Photoelectron Spectroscopy Study of the Corrosion Behaviour of Galvanized Steel and Electroplating Steel.” Appl. Surf. Sci., 257 3383–3387 (2011). doi:10.1016/j.apsusc.2010.11.029

    Article  Google Scholar 

  52. Corfias, C, Pebere, N, Lacabanne, C, “Characterization of a Thin Protective Coating on Galvanized Steel by Electrochemical Impedance Spectroscopy and a Thermostimulated Current Method.” Corros. Sci., 41 1539–1555 (1999)

    Article  Google Scholar 

  53. Hamlaoui, Y, Tifouti, L, Pedraza, F, “Corrosion Behaviour of Molybdate–Phosphate–Silicate Coatings on Galvanized Steel.” Corros. Sci., 51 2455–2462 (2009). doi:10.1016/j.corsci.2009.06.037

    Article  Google Scholar 

  54. Jardy, A, Rosset, R, Wiart, R, “Diphosphate Coatings for Protection of Galvanized Steel: Quality Control by Impedance Measurements.” J. Appl. Electrochem., 14 537–545 (1984). doi:10.1007/BF00610820

    Article  Google Scholar 

  55. Sun, H, Liu, S, Sun, L, “A Comparative Study on the Corrosion of Galvanized Steel Under Simulated Rust Layer Solution With and Without 3.5 wt% NaCl.” Int. J. Electrochem. Sci., 8 3494–3509 (2013)

    Google Scholar 

  56. Tomachuk, CR, Elsner, CI, Di Sarli, AR, “Electrochemical Characterization of Chromate Free Conversion Coatings on Electrogalvanized Steel.” Mater. Res., 17 61–68 (2014). doi:10.1590/S1516-14392013005000179

    Article  Google Scholar 

  57. Hamlaoui, Y, Pedraza, F, Tifouti, L, “Comparative Study by Electrochemical Impedance Spectroscopy (EIS) on the Corrosion Resistance of Industrial and Laboratory Zinc Coatings.” Am. J. Appl. Sci., 4 430 (2007)

    Article  Google Scholar 

  58. Bird, CE, The Influence of Minor Constituents of Portland Cement on the Behaviour of Galvanized Steel in Concrete. South African Council for Scientific and Industrial Research, Pretoria, 1964

    Google Scholar 

  59. Lieber, W, Gebauer, J, “Einbau von Zink in Calciumsilicathydrate.” Zem-Kalk-Gips, 4 161–164 (1969)

    Google Scholar 

  60. Liebau, F, Amel-Zadeh, A, “The Crystal Structure of Ca[Zn2(OH)6]·2H2O—A Retarder in the Setting of Portland Cement.” Krist. Tech., 7 221–227 (1972). doi:10.1002/crat.19720070124

    Article  Google Scholar 

  61. Magalhães, AAO, Tribollet, B, Mattos, OR, et al., “Chromate Conversion Coatings Formation on Zinc Studied by Electrochemical and Electrohydrodynamical Impedances.” J. Electrochem. Soc., 150 B16–B25 (2003). doi:10.1149/1.1528196

    Article  Google Scholar 

  62. Amirudin, A, Thierry, D, “Corrosion Mechanisms of Phosphated Zinc Layers on Steel as Substrates for Automotive Coatings.” Prog. Org. Coat., 28 59–75 (1996). doi:10.1016/0300-9440(95)00554-4

    Article  Google Scholar 

  63. Cachet, C, Ganne, F, Joiret, S, et al., “EIS Investigation of Zinc Dissolution in Aerated Sulphate Medium. Part II: Zinc Coatings.” Electrochim. Acta, 47 3409–3422 (2002). doi:10.1016/S0013-4686(02)00277-3

    Article  Google Scholar 

  64. Lin, B, Lu, J, Kong, G, “Synergistic Corrosion Protection for Galvanized Steel by Phosphating and Sodium Silicate Post-sealing.” Surf. Coat. Technol., 202 1831–1838 (2008). doi:10.1016/j.surfcoat.2007.08.001

    Article  Google Scholar 

  65. Jr, SF, Bastidas, JM, Galvan, JC, et al., “Electrochemical Determination of Rusted Steel Surface Stability.” J. Appl. Electrochem., 23 157–161 (1993). doi:10.1007/BF00246953

    Google Scholar 

  66. Kiruthika, P, Subasri, R, Jyothirmayi, A, et al., “Effect of Plasma Surface Treatment on Mechanical and Corrosion Protection Properties of UV-Curable Sol-Gel Based GPTS-ZrO2 Coatings on Mild Steel.” Surf. Coat. Technol., 204 1270–1276 (2010). doi:10.1016/j.surfcoat.2009.10.017

    Article  Google Scholar 

  67. Kim, H-G, Ahn, S-H, Kim, J-G, et al., “Electrochemical Behavior of Diamond-Like Carbon Films for Biomedical Applications.” Thin Solid Films, 475 291–297 (2005). doi:10.1016/j.tsf.2004.07.052

    Article  Google Scholar 

  68. Ahmad, S, Zafar, F, Sharmin, E, et al., “Synthesis and Characterization of Corrosion Protective Polyurethanefattyamide/Silica Hybrid Coating Material.” Prog. Org. Coat., 73 112–117 (2012). doi:10.1016/j.porgcoat.2011.09.007

    Article  Google Scholar 

  69. Vennesland, Ø, Raupach, M, Andrade, C, “Recommendation of Rilem TC 154-EMC: “Electrochemical Techniques for Measuring Corrosion in Concrete”—Measurements with Embedded Probes.” Mater. Struct., 40 745–758 (2007). doi:10.1617/s11527-006-9219-4

    Article  Google Scholar 

  70. Raupach, M, Elsener, B, et al., Corrosion of Reinforcement in Concrete: Mechanisms, Monitoring. Woodhead and CRC Press, Cambridge and Boca Raton, Inhibitors and Rehabilitation Techniques, 2007

    Book  Google Scholar 

  71. Pereira, EV, Figueira, RB, Salta, MM, Fonseca, ITE, “Long-Term Efficiency of Two Organic Corrosion Inhibitors for Reinforced Concrete.” Mater. Sci. Forum, 636–637 1059–1064 (2010). doi:10.4028/www.scientific.net/MSF.636-637.1059

    Article  Google Scholar 

  72. Jean-Pierre, J, Christian, G, Pascal, T, Synthetic Polymeric Membranes. Springer, Berlin, 2008

    Google Scholar 

  73. Hong, T, Nagumo, M, “Effect of Surface Roughness on Early Stages of Pitting Corrosion of Type 301 stainless steel.” Corros. Sci., 39 1665–1672 (1997). doi:10.1016/S0010-938X(97)00072-3

    Article  Google Scholar 

  74. Zuo, Y, Wang, H, Xiong, J, “The Aspect Ratio of Surface Grooves and Metastable Pitting of Stainless Steel.” Corros. Sci., 44 25–35 (2002). doi:10.1016/S0010-938X(01)00039-7

    Article  Google Scholar 

  75. Sasaki, K, Burstein, GT, “The Generation of Surface Roughness During Slurry Erosion-Corrosion and Its Effect on the Pitting Potential.” Corros. Sci., 38 2111–2120 (1996). doi:10.1016/S0010-938X(96)00066-2

    Article  Google Scholar 

  76. Li, W, Li, DY, “Influence of Surface Morphology on Corrosion and Electronic Behavior.” Acta Mater., 54 445–452 (2006). doi:10.1016/j.actamat.2005.09.017

    Article  Google Scholar 

  77. Cabrini, M, Cigada, A, Rondell, G, Vicentini, B, “Effect of Different Surface Finishing and of Hydroxyapatite Coatings on Passive and Corrosion Current of Ti6Al4V Alloy in Simulated Physiological Solution.” Biomaterials, 18 783–787 (1997). doi:10.1016/S0142-9612(96)00205-0

    Article  Google Scholar 

  78. Shahryari, A, Kamal, W, Omanovic, S, “The Effect of Surface Roughness on the Efficiency of the Cyclic Potentiodynamic Passivation (CPP) Method in the Improvement of General and Pitting Corrosion Resistance of 316LVM Stainless Steel.” Mater. Lett., 62 3906–3909 (2008). doi:10.1016/j.matlet.2008.05.032

    Article  Google Scholar 

  79. Moreira, SDFC, Silva, CJR, Prado, LASA, et al., “Development of New High Transparent Hybrid Organic-Inorganic Monoliths with Surface Engraved Diffraction Pattern.” J. Polym. Sci. B, 50 492–499 (2012). doi:10.1002/polb.23028

    Article  Google Scholar 

  80. Faghihi, K, Nourbakhsh, M, Hajibeygi, M, “Synthesis and Characterization of Organo-soluble Poly(amide-imide)s Based on 1,2-Bis[4-(trimellitimido)phenoxy]ethane and Aromatic Diamines.” Chin. J. Polym. Sci., 28 941–949 (2010). doi:10.1007/s10118-010-9182-y

    Article  Google Scholar 

  81. Mallakpour, S, Taghavi, M, “The Accuracy of Approximation Equations in the Study of Thermal Decomposition Behaviour of Some Synthesized Optically Active Polyamides.” Iran. Polym. J., 18 857–872 (2009)

    Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge the financial support from Fundação para a Ciência e Tecnologia (FCT) for the PhD grant SFRH/BD/62601/2009 and EU COST action MP1202: HINT—“Rational design of hybrid organic–inorganic interfaces: the next step towards functional materials.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita B. Figueira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueira, R.B., Silva, C.J.R. & Pereira, E.V. Hybrid sol–gel coatings for corrosion protection of galvanized steel in simulated concrete pore solution. J Coat Technol Res 13, 355–373 (2016). https://doi.org/10.1007/s11998-015-9751-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-015-9751-7

Keywords

Navigation