Skip to main content
Log in

Application of polymer nanoparticle coating for tuning the hydrophobicity of cellulosic substrates

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Nanoparticles of partially imidized poly(styrene–maleic anhydride) were applied from an aqueous dispersion as a one- or two-layer coating onto paper substrates, for controlling the paper surface hydrophobicity and improving the water barrier resistance. The effect of deposition conditions and thermal treatments on the topography and properties of the coating was studied by scanning electron microscopy, atomic force microscopy (AFM), contact angle measurements, and friction measurements. The wettability of paper surfaces with adsorbed nanoparticles can be controlled by tuning the chemical and topographical surface parameters: the water contact angles were found to increase at higher imide content as determined by Raman spectroscopy (depending on synthesis and thermal treatment), and higher average surface roughness determined by AFM (depending on the deposition method). The present technique may serve as a unique replacement for chemical treatments hydrophobizing fibrous substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Modaressi, H, Garnier, G, “Mechanism of Wetting and Absorption of Water Droplets on Sized Paper: Effects of Chemical and Physical Heterogeneity.” Langmuir, 18 642–649 (2002)

    Article  CAS  Google Scholar 

  2. Werner, O, Wagberg, L, Lindstrom, T, “Wetting of Structured Hydrophobic Surfaces by Water Droplets.” Langmuir, 21 12235–12243 (2005)

    Article  CAS  Google Scholar 

  3. Lingstrom, R, Notley, SM, Wagberg, L, “Wettability Changes in the Formation of Polymeric Multilayers on Cellulose Fibers and Their Influence on Wet Adhesion.” J. Colloid Interface Sci., 314 1–9 (2007)

    Article  Google Scholar 

  4. Roy, D, Guthrie, JT, Perrier, S, “Graft Polymerization: Grafting Poly(Styrene) From Cellulose Via Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization.” Macromolecules, 38 10363–10372 (2005)

    Article  CAS  Google Scholar 

  5. Lönnberg, H, Zhou, Q, Brumer, H, Teeri, TT, Malmström, E, Hult, A, “Grafting of Cellulose Fibers with Poly(Epsilon-Caprolactone) and Poly(l-Latic Acid) Via Ring-Opening Polymerization.” Biomacromolecules, 7 2178–2185 (2006)

    Article  Google Scholar 

  6. Carlmark, A, Malmström, EE, “Atom Transfer Radical Polymerization From Cellulose Fibers at Ambient Temperature.” J. Am. Chem. Soc., 124 900–901 (2002)

    Article  CAS  Google Scholar 

  7. Carlmark, A, Malmström, EE, “ATRP Grafting From Cellulose Fibers to Create Block-Copolymer Grafts.” Biomacromolecules, 4 1740–1745 (2003)

    Article  CAS  Google Scholar 

  8. Berlioz, S, Stinga, C, Condoret, J, Samain, D, “Investigation of a Novel Principle of Chemical Grafting for Modification of Cellulose Fibers.” Int. J. Chem. React. Eng., 6 1–14 (2008)

    Google Scholar 

  9. Tsubokawa, N, Iida, T, Takayama, T, “Modification of Cellulose Powder Surface by Grafting of Polymers with Controlled Molecular Weight and Narrow Molecular Weight Distribution.” J Appl. Polym. Sci., 75 515–522 (2000)

    Article  CAS  Google Scholar 

  10. Nystrom, D, Lindqvist, J, Östmark, E, Hult, A, Malmström, E, “Superhydrophobic Bio-Fiber Surfaces Via Tailored Grafting Architecture.” Chem. Commun., 3594–3596 (2006)

  11. Vesel, A, Mozetic, M, Hladnik, A, Dolenc, J, Zule, J, Milosevic, S, Krstulovic, N, Klanjusek-Gunde, M, Hauptmann, N, “Modification of Ink-Jet Paper by Oxygen-Plasma Treatment.” J. Phys. D, 40 3689–3696 (2007)

    Article  CAS  Google Scholar 

  12. Balu, B, Breedveld, V, Hess, DW, “Fabrication of Roll-Off and Sticky Superhydrophobic Cellulose Surfaces Via Plasma Processing.” Langmuir, 24 4785–4790 (2008)

    Article  CAS  Google Scholar 

  13. Vaswani, S, Koskinen, J, Hess, DW, “Surface Modification of Paper and Cellulose by Plasma-Assisted Deposition of Fluorocarbon Films.” Surf. Coat. Technol., 195 121–129 (2005)

    Article  CAS  Google Scholar 

  14. Navarro, F, Davalos, F, Gonzalez-Cruz, R, Lopez-Dellamary, F, Manriquez, R, Turrado, J, Ramos, J, “Sisal Chemo-Thermomechanical Pulp Paper with a Strongly Hydrophobic Surface Coating Produced by a Pentafluorophenyldimethylsilane Cold Plasma.” J. Appl. Polym. Sci., 112 479–488 (2009)

    Article  CAS  Google Scholar 

  15. Mukhopadhyay, SM, Joshi, P, Datta, S, Zhao, JG, France, P, “Plasma Assisted Hydrophobic Coating on Porous Materials: Influence of Plasma Parameters.” J. Phys. D, 35 1927–1933 (2002)

    Article  CAS  Google Scholar 

  16. Mukhopadhyay, SM, Joshi, P, Datta, S, Macdaniel, J, “Plasma Assisted Surface Coating of Porous Solids.” Appl. Surf. Sci., 201 219–226 (2002)

    Article  CAS  Google Scholar 

  17. Kim, JH, Liu, G, Kim, SH, “Deposition of Stable Hydrophobic Coatings with in-line CH4 Atmospheric rf Plasma.” J. Mater. Chem., 16 977–981 (2006)

    Article  CAS  Google Scholar 

  18. Navarro, F, Davalos, F, Denes, F, Cruz, LE, Young, RA, Ramos, J, “Highly Hydrophobic Sisal Chemithermomechanical Pulp (CTMP) Paper by Fluorotrimethylsilane Plasma Treatment.” Cellulose, 10 411–424 (2003)

    Article  CAS  Google Scholar 

  19. Balu, B, Kim, JS, Breedveld, V, Hess, DW, “Tunability of the Adhesion of Water Droplets on a Superhydrophobic Paper Surface Via Selective Plasma Etching.” J. Adhes. Sci. Technol., 23 361–380 (2009)

    Article  CAS  Google Scholar 

  20. Gaiolas, C, Costa, AP, Nunes, M, Silva, MJS, Belgacem, MN, “Grafting of Paper by Silane Coupling Agents Using Cold-Plasma Discharges.” Plasma Process. Polym., 5 444–452 (2008)

    Article  CAS  Google Scholar 

  21. Li, S, Xie, H, Zhang, SB, Wang, X, “Facile Transformation of Hydrophilic Cellulose into Superhydrophobic Cellulose.” Chem. Commun., 4857–4859 (2007)

  22. Cunha, AG, Freire, CSR, Silvestre, AJD, “Highly Hydrophobic Biopolymers Prepared by the Surface Pentafluorobenzoylation of Cellulose Substrates.” Biomacromolecules, 8 1347–1352 (2007)

    Article  CAS  Google Scholar 

  23. Yuan, H, Nishiyama, Y, Kuga, S, “Surface Esterification of Cellulose by Vapor-Phase Treatment with Tetrafluoroacetic Anhydride.” Cellulose, 12 543–549 (2005)

    Article  CAS  Google Scholar 

  24. Andresen, M, Johansson, LS, Tanem, BS, Stenius, P, “Properties and Characterization of Hydrophobized Microfibrillated Cellulose.” Cellulose, 13 665–677 (2006)

    Article  CAS  Google Scholar 

  25. Hubbe, MA, “Paper’s Resistance to Wetting: A Review of Internal Sizing Chemicals and Their Effects.” Bioresources, 2 106–145 (2007)

    Google Scholar 

  26. Jansson, A, Järnström, L, “Barrier and Mechanical Properties of Modified Starches.” Cellulose, 12 423–433 (2005)

    Article  CAS  Google Scholar 

  27. Andersson, CM, Järnström, L, “Controlled Penetration of Starch and Hydrophobic Sizing Agent in Surface Sizing of Porous Materials.” Appita J., 59 207–212 (2006)

    CAS  Google Scholar 

  28. Gallino, R, “Food Release Coating.” US Patent 3,793,067, 1974

  29. Chich, ON, Means, GN, “Paper Coated with Compositions of Polymeric Materials.” US Patent 3,849,183, 1974

  30. Mueller, GH, Wendel, K, “Paper Coating Compositions.” US Patent 3,847,856, 1974

  31. Vilcnik, A, Jerman, I, Vuk, AS, “Structural Properties and Antibacterial Effects of Hydrophobic and Oleophobic Sol-Gel Coatings for Cotton Fabrics.” Langmuir, 25 5869–5880 (2009)

    Article  CAS  Google Scholar 

  32. Han, JH, Krochta, JM, “Physical Properties and Oil Absorption of Whey-Protein-Coated Paper.” J. Food Sci., 66 294–299 (2001)

    Article  CAS  Google Scholar 

  33. Despond, S, Espuche, E, Cartier, N, Domard, A, “Barrier Properties of Paper-Chitosan and Paper-Chitosan-Carnauba Wax Films.” J. Appl. Polym. Sci., 98 704–710 (2005)

    Article  CAS  Google Scholar 

  34. Andersson, C, “New Ways to Enhance the Functionality of Paperboard by Surface Treatment—A Review.” Packag. Technol. Sci., 21 339–373 (2008)

    Article  CAS  Google Scholar 

  35. Koskinen, M, Wilen, CE, “Preparation of Core-Shell Latexes for Paper Coatings.” J. Appl. Polym. Sci., 112 1265–1270 (2009)

    Article  CAS  Google Scholar 

  36. Xu, P, Zhong, W, Wang, H, Lin, Y, Du, Q, “Study on Water Resistance of Paper Coated with Polyacrylate Microlatex.” J. Appl. Polym. Sci., 95 962–966 (2005)

    Article  CAS  Google Scholar 

  37. Kulpinski, P, “Cellulose Fibers Modified by Hydrophobic-Type Polymer.” J. Appl. Polym. Sci., 104 398–409 (2007)

    Article  CAS  Google Scholar 

  38. Sahin, HT, Manolache, S, Young, RA, Denes, F, “Surface Fluorination of Paper in CF4-RF Plasma Environments.” Cellulose, 9 171–181 (2002)

    Article  CAS  Google Scholar 

  39. Yang, H, Deng, Y, “Preparation and Physical Properties of Superhydrophobic Papers.” J. Colloid Interface Sci., 325 588–593 (2008)

    Article  CAS  Google Scholar 

  40. Hassan, MM, Islam, MR, Khan, MA, “Surface Modification of Cellulose by Radiation Pretreatments with Organo-Silicone Monomer.” Polym. Plast. Technol. Eng., 44 833–846 (2005)

    Article  CAS  Google Scholar 

  41. Abdelmouleh, M, Boufi, S, Belgacem, MN, Dufresne, A, Gandini, A, “Modification of Cellulose Fibers with Functionalized Silanes.” J. Appl. Polym. Sci., 98 974–984 (2005)

    Article  CAS  Google Scholar 

  42. Abdelmouleh, M, Boufi, S, Belgacem, MN, Duarte, AP, Ben Salah, A, Gandini, A, “Silane Adsorption onto Cellulosic Fibers: Hydrolysis and Condensation Reactions.” Int. J. Adhes. Adhes., 24 43–54 (2004)

    Article  CAS  Google Scholar 

  43. Hasani, M, Cranston, ED, Westman, G, Gray, DG, “Cationic Surface Functionalization of Cellulose Nanocrystals.” Soft Matter, 4 2238–2244 (2008)

    Article  CAS  Google Scholar 

  44. Goncalves, G, Marques, P, Trindade, T, Pascoal, C, Gandini, A, “Superhydrophobic Cellulose Nanocomposites.” J. Colloid Interface Sci., 324 42–46 (2008)

    Article  CAS  Google Scholar 

  45. Sarrazin, P, Beneventi, D, Chaussy, D, Vurth, L, Stephan, O, “Adsorption of Cationic Photoluminescent Nanoparticles on Softwood Cellulose Fibers.” Colloids Surf. A, 334 80–86 (2009)

    Article  CAS  Google Scholar 

  46. Callone, E, Fletcher, JM, Carturan, G, Raj, R, “A Low-Cost Method for Producing High-Performance Nanocomposite Thin Films Made From Silica and CNTs on Cellulose Substrates.” J. Mater. Sci., 43 4862–4869 (2008)

    Article  CAS  Google Scholar 

  47. Johnston, JH, Kelly, FM, Burridge, KA, Borrmann, T, “Hybrid Materials of Conducting Polymers with Natural Fibers and Silicates.” Int. J. Nanotechnol., 6 312–328 (2009)

    Article  CAS  Google Scholar 

  48. Agarwal, M, Lvov, Y, Varahramyan, K, “Conductive Wood Microfibers for Smart Paper Through Layer-by-Layer Nanocoating.” Nanotechnology, 17 5319–5325 (2006)

    Article  CAS  Google Scholar 

  49. Small, AC, Johnston, JH, “Novel Hybrid Materials of Magnetic Nanoparticles and Cellulose Fibers.” J. Colloid Interface Sci., 331 122–126 (2009)

    Article  CAS  Google Scholar 

  50. Ghule, K, Ghule, AV, Chen, BJ, Ling, LY, “Preparation and Characterization of ZnO Nanoparticles Coated Paper and Its Antibacterial Activity Study.” Green Chem., 8 1034–1041 (2006)

    Article  CAS  Google Scholar 

  51. Svagan, AJ, Hedenqvist, MS, Berglund, L, “Reduced Water Vapour Sorption in Cellulose Nanocomposites with Starch Matrix.” Compos. Sci. Technol., 69 500–506 (2009)

    Article  CAS  Google Scholar 

  52. Pal, L, Joyce, MK, Fleming, PD, Cretté, SA, Ruffner, C, “High Barrier Sustainable Co-Polymerized Coatings.” J. Coat. Technol. Res., 5 479–489 (2008)

    Article  CAS  Google Scholar 

  53. Daoud, WA, Xin, JH, Tao, XJ, “Superhydrophobic Silica Nanocomposites Coating by a Low-Temperature Process.” J. Am. Ceram. Soc., 87 1782–1784 (2004)

    Article  CAS  Google Scholar 

  54. Ibrahim, K, Salminen, A, Holappa, S, Kataja, K, Lampinen, H, Löfgren, B, Laine, J, “Preparation and Characterization of PS-PEO Amphiphilic Block Copolymers Via Atom Transfer Radical Polymerization.” J. Appl. Polym. Sci., 102 4304–4313 (2006)

    Article  CAS  Google Scholar 

  55. Sreekumar, J, Sain, M, Farnood, R, Dougherty, W, “Influence of Styrene Maleic Anhydride Imide on Ink-Jet Print Quality and Coating Structure.” Nord. Pulp Pap. Res. J., 22 307–313 (2007)

    Article  CAS  Google Scholar 

  56. Wang, T, Simonsen, J, Biermann, CJ, “A New Sizing Agent: Styrene-Maleic Anhydride Copolymer with Alum or Iron Mordants.” Tappi J., 80 277–282 (1997)

    CAS  Google Scholar 

  57. Shulkin, A, Stöver, HDH, “Microcapsules From Styrene-Maleic Anhydride Copolymers: Study of Morphology and Release Behaviour.” J. Membrane Sci., 2 433–444 (2002)

    Article  Google Scholar 

  58. Fu, SH, Fang, KJ, “Preparation of Styrene-Maleic Acid Copolymers and Its Application in Encapsulated Pigment Red 122 Dispersion.” J. Appl. Polym. Sci., 105 317–321 (2007)

    Article  CAS  Google Scholar 

  59. Malardier-Jugroot, C, van de Ven, TGM, Whitehead, MA, “Linear Conformation of Poly(Styrene-Alt-Maleic Anhydride) Capable of Self-Assembly: A Result of Chain Stiffening by Internal Hydrogen Bonds.” J. Phys. Chem. B, 109 7022–7032 (2005)

    Article  CAS  Google Scholar 

  60. Young, T, “An Essay on the Cohesion of Fluids.” Philos. Trans. R. Soc. Lond., 95 65–87 (1805)

    Article  Google Scholar 

  61. Wenzel, TN, “Surface Roughness and Contact Angle.” J. Phys. Colloid Chem., 53 1466–1467 (1949)

    Article  CAS  Google Scholar 

  62. Cassie, ABD, Baxter, S, “Wettability of Porous Surfaces.” Trans. Faraday Soc., 40 546–550 (1944)

    Article  CAS  Google Scholar 

  63. Dettre, RH, Johnson, RE, “Contact Angle Measurements on Heterogeneous Surfaces.” J. Phys. Chem., 69 1507–1515 (1965)

    Article  CAS  Google Scholar 

  64. Gu, X, Sung, L, Kidah, B, Oudina, M, Clerici, C, Hu, H, Stanley, D, Byrd, WE, Jean, JY, Nguyen, T, “Multiscale Physical Characterization of an Outdoor-Exposed Polymeric Coating System.” J. Coat. Technol. Res., 6 67–79 (2009)

    Article  CAS  Google Scholar 

  65. Samyn, P, Van Erps, J, Thienpont, H, Deconinck, M, Schoukens, G, Van den Abbeele, H, Vonck, L, Stanssens, D, “Interaction of Hybrid Organic Nanoparticles into Films with Micro- to Nanoscale Roughness.” European Conference on Nanofilms, Liège (Belgium), p. 156 (2010)

  66. Gietzelt, T, “Dependence of the Contact Angle on the Molecular Structure of Poly(Propylene-Alt-N-Maleimide) and Poly(Styrene-Alt-N-Maleimide) Copolymers.” J. Mater. Sci., 36 2073–2079 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Pieter Samyn acknowledges the Research Foundation Flanders (F.W.O.) for a Postdoctoral Research Fellow Grant. Henk Van den Abbeele acknowledges the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT) for a 3-year funding program. Contact angle measurements were done at The Particle and Interfacial Technology Group (Ghent University) and AFM studies were done at The Physics and Chemistry of Nanostructures Group (Ghent University). Peter Mast performed scanning electron microscopy studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Samyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samyn, P., Schoukens, G., Van den Abbeele, H. et al. Application of polymer nanoparticle coating for tuning the hydrophobicity of cellulosic substrates. J Coat Technol Res 8, 363–373 (2011). https://doi.org/10.1007/s11998-010-9309-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-010-9309-7

Keywords

Navigation