Skip to main content
Log in

A low-cost method for producing high-performance nanocomposite thin-films made from silica and CNTs on cellulose substrates

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We show that thin films of silica loaded with 22 wt% of carbon nanotubes (CNTs) can be deposited on cellulose substrate via the sol–gel route by a well-controlled process. The high loadings are obtained by airbrush spraying of a diluted sol solution (which contained a much smaller concentration of CNTs) followed by drying at 200 °C. The films are nearly continuous despite the fibrous structure of the substrate. The high degree of connectivity of the stranded structure of the CNTs yields a specific electrical conductivity of 3 × 103 Ω−1 m−1. In contrast, films made with high loadings of carbon black have poor electrical conductivity. Results from mechanical tensile tests of samples are also reported. This economical method of producing CNT dispersed thin films could find application in catalysis, as electrodes in fuel cells and batteries, and in sensor technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Felten A, Bittencourt C, Pireaux JJ (2006) Nanotechnology 17:1954. doi:https://doi.org/10.1088/0957-4484/17/8/026

    Article  CAS  Google Scholar 

  2. Thorat IV, Mathur V, Harb JN, Wheeler DR (2006) J Power Sources 162:673. doi:https://doi.org/10.1016/j.jpowsour.2006.06.032

    Article  CAS  Google Scholar 

  3. Campbell IM (1988) Catalysis at surfaces. Kluwer Academic Publishers, London

    Book  Google Scholar 

  4. Rioux RM, Song H, Hoefelmeyer JD, Yang P, Somorjai GA (2005) J Phys Chem B 109(6):2192

    Article  CAS  Google Scholar 

  5. Jung LS, Campbell CT, Chinowsky TM, Mar MN, Yee SS (1998) Langmuir 14(19):5636

    Article  CAS  Google Scholar 

  6. Nigge U, Wiemhöfer H-D, Römer EWJ, Bouwmeester HJM, Schulte TR (2002) Solid State Ionics 146(1–2):163

    Article  CAS  Google Scholar 

  7. Keszei S, Matko S, Bertalan G, Anna P, Marosi G, Toth A (2005) Eur Polym J 41:697 doi:https://doi.org/10.1016/j.eurpolymj.2004.10.039

    Article  CAS  Google Scholar 

  8. Cai LF, Mai YL, Rong MZ, Ruan WH, Zhang MQ (2007) eXPRESS Polym Lett 1(1):2

    Article  CAS  Google Scholar 

  9. Andersson P, Nilsson D, Svensson P-O, Chen M, Malmström A, Remonen T, Kugler T, Berggren M (2002) Adv Mater 14(20):16

    Article  Google Scholar 

  10. Aoki Y, Huang J, Kunitake T (2006) J Mater Chem 16:292. doi:https://doi.org/10.1039/b512225b

    Article  CAS  Google Scholar 

  11. Grafe T, Graham K (2003) Int Nonwov J 12:51

    CAS  Google Scholar 

  12. Trepte J, Bottcher H (2000) J Sol-Gel Sci Technol 19:691. doi:https://doi.org/10.1023/A:1008766807514

    Article  CAS  Google Scholar 

  13. Mahltig B, Ffiedler D, Bottcher H (2004) J Sol-Gel Sci Technol 32:219. doi:https://doi.org/10.1007/s10971-004-5791-7

    Article  CAS  Google Scholar 

  14. (a) Chou TP, Cao G (2003) J Sol-Gel Sci Technol 27:31. doi:https://doi.org/10.1023/A:1022675809404; (b) Downie R (2001) How to use an airbrush. Kalmbach Publishing Co., Waukesha, WI

    Article  CAS  Google Scholar 

  15. Curtis CJ, Schulz DL, Miedaner A, Alleman J, Rivkin T, Perkins JD, Ginley DS (2001) Mater Res Soc Symp Proc 676:861

    Article  Google Scholar 

  16. (a) Watson KA, Smith JG Jr, Connell JW (2003) Space durable polyimide/carbon nanotube composite films for electrostatic charge mitigation. NASA Langley Technical Library Digital Repository, New York; (b) Baker GL, Ghosh RN, Osborn DJ III, Zhang P (2005) Fibre optical micro-detectors for oxygen sensing in power plants. DOE Quarterly Technical Report, New York

  17. Gojny FH, Wichmann MHG, Fiedler B, Schulte K (2005) Comp Sci Technol 65:2300. doi:https://doi.org/10.1016/j.compscitech.2005.04.021

    Article  CAS  Google Scholar 

  18. Vasenka J, Manne S, Giberson R, Marsh T, Henderson E (1993) Biophys J 65:992

    Article  Google Scholar 

  19. Schmid G (ed) (2004) Nanoparticles: from theory to application. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  20. Deng Y, Deng C, Yang D, Wang C, Fu S, Zhang X (2005) Chem Commun 5548

  21. Takasu Y, Kawaguchi T, Sugimoto W, Murakami Y (2003) Electrochim Acta 48:3861. doi:https://doi.org/10.1016/S0013-4686(03)00521-8

    Article  CAS  Google Scholar 

  22. Péna-Alonso R, Sicurelli A, Callone E, Carturan G, Raj R (2007) J Power Sources 165:315. doi:https://doi.org/10.1016/j.jpowsour.2006.12.043

    Article  Google Scholar 

  23. Campostrini R, Ischia M, Palmisano L (2003) J Therm Anal Calorim 71:997. doi:https://doi.org/10.1023/A:1023307100279

    Article  CAS  Google Scholar 

  24. Sivananda SJ (1987) J Am Ceram Soc 70(11):C-298

    Google Scholar 

  25. Sanchez J, McCormick A (1992) J Phys Chem 96:8973. doi:https://doi.org/10.1021/j100201a051

    Article  CAS  Google Scholar 

  26. Brinker CJ, Keefer KD, Schaefer DW, Ashley CS (1982) J Non-Cryst Solids 48:47. doi:https://doi.org/10.1016/0022-3093(82)90245-9

    Article  CAS  Google Scholar 

  27. Li F, Wang Y, Wang D, Wei F (2004) Carbon 42:2375. doi:https://doi.org/10.1016/j.carbon.2004.02.025

    Article  CAS  Google Scholar 

  28. Campostrini R, D’Andrea G, Carturan G, Ceccato R, Soraru’ GD (1996) J Mater Chem 6:585. doi:https://doi.org/10.1039/jm9960600585

    Article  CAS  Google Scholar 

  29. Vinogradova E, Estrada M, Moreno A (2006) J Colloid Interface Sci 298:209. doi:https://doi.org/10.1016/j.jcis.2005.11.064

    Article  CAS  Google Scholar 

  30. Pan G, Mark JE, Schaefer DW (2003) J Polym Sci B Polym Phys 41:3314. doi:https://doi.org/10.1002/polb.10695

    Article  CAS  Google Scholar 

  31. Warren WL, Lenahan PM, Brinker CJ, Shaffer RG, Ashley CS, Reed ST (1990) Mater Res Soc Symp Proc 413

  32. Hübert T, Shimamura A, Klyszcz A (2005) Mater Sci – Poland 23:1

    Google Scholar 

  33. Chen Y, Zhang Z, Sui X, Brennan JD, Brook MA (2005) J Mater Chem 15:3132. doi:https://doi.org/10.1039/b502959g

    Article  CAS  Google Scholar 

  34. Fan Z, Wei T, Luo G, Wei F (2005) J Mater Sci 40:5075

    Article  CAS  Google Scholar 

  35. Colbert DT (2003) Plastics Additives & Compounding

  36. Kasumov AY, Khodos II, Ajayan PM, Colliex C (1996) Europhys Lett 34:429. doi:https://doi.org/10.1209/epl/i1996-00474-0

    Article  CAS  Google Scholar 

  37. Carturan G, Khandelwal N, Tognana L, Sglavo VM (2007) J Non-Cryst Solids 353:1540. doi:https://doi.org/10.1016/j.jnoncrysol.2007.01.037

    Article  CAS  Google Scholar 

  38. Sglavo VM, Carturan G, Dal Monte R, Muraca M (1999) J Mater Sci 34:3587. doi:https://doi.org/10.1023/A:1004626632730

    Article  CAS  Google Scholar 

  39. Christie JH, Woodhead IM (2002) Textile Res J 72:273. doi:https://doi.org/10.1177/004051750207200315

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Ing. A. Pegoretti and Dr. Matteo Traina for mechanical tests and useful discussions. Julie Fletcher received support by a grant from the National Science Foundation from the Ceramics Program of the Division of Materials Research: DMR-0502446.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuela Callone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Callone, E., Fletcher, J.M., Carturan, G. et al. A low-cost method for producing high-performance nanocomposite thin-films made from silica and CNTs on cellulose substrates. J Mater Sci 43, 4862–4869 (2008). https://doi.org/10.1007/s10853-008-2707-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2707-x

Keywords

Navigation