Skip to main content
Log in

Influence of Nanovesicle Type, Nanoliposome and Nanoniosome, on Antioxidant and Antimicrobial Activities of Encapsulated Myrtle Extract: A Comparative Study

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

For the first time, a comparative study on antioxidant and antimicrobial properties of two lipid-based nanovesicles encapsulated myrtle extract, including different formulations of nanoliposome and nanoniosome, is conducted. GC–MS analysis of the hydroethanolic extract of myrtle leaf revealed 1,2,3-benzenetriol (40.62%) as a major component. It is worth mentioning that both nanovesicles were prepared in the absence of toxic solvents and cholesterol. The results of this study have displayed that as-fabricated nanovesicles were temperature and pH-sensitive. The differential scanning calorimetry (DSC) study showed a significant improvement in the thermal phase transition of the myrtle extract after encapsulation. In addition, the nanoniosome formulation was more stable than the nanoliposome formulation. The myrtle extract release rate was controlled in vitro by adjusting the wt. % of constituents in lipid and aqueous phases of the nanovesicles. The results have confirmed the fact that the release rate of extract from nanovesicles plays a crucial role in controlling biological activities, as was expected. The myrtle extract-encapsulated nanoliposomes with higher release rates exhibited more robust antioxidant activity compared to that of nanoniosomes. In the current work, antioxidant activities by FRAP were negligible compared with the DPPH method. The nanoliposome formulations showed the lowest MIC and highest zone inhibition against S. aureus, E.coli, and S. enteritidis compared to that of nanoniosome formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The authors declare that [the/all other] data supporting the findings of this study are available within the article.

References

  • Abdulkarim, S. M., & Ghazali, H. M. (2007). Comparison of melting behaviors of edible oils using conventional and hyper differential scanning calorimetric scan rates. ASEAN Food Journal, 14(1), 25.

    Google Scholar 

  • Azarpazhooh, E., Sharayei, P., Zomorodi, S., & Ramaswamy, H. S. (2019). Physicochemical and phytochemical characterization and storage stability of freeze-dried encapsulated pomegranate peel anthocyanin and in vitro evaluation of its antioxidant activity. Food and Bioprocess Technology, 12(2), 199–210.

    Article  CAS  Google Scholar 

  • Aleksic, V., & Knezevic, P. (2014). Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L. Microbiological Research, 169(4), 240–254.

    Article  CAS  Google Scholar 

  • Al-Laith, A. A., Alkhuzai, J., & Freije, A. (2019). Assessment of antioxidant activities of three wild medicinal plants from Bahrain. Arabian Journal of Chemistry, 12(8), 2365–2371.

    Article  CAS  Google Scholar 

  • Akyuz, M., Guzel, A., & Elmastas, M. (2019). Fatty acid composition and antioxidant capacity of Myrtus (Myrtus communis L.). Malaysian Applied Biology Journal48(5), 101–112.‏

  • Aziz, S. G. G., & Almasi, H. (2018). Physical characteristics, release properties, and antioxidant and antimicrobial activities of whey protein isolate films incorporated with thyme (Thymus vulgaris L.) extract-loaded nanoliposomes. Food and Bioprocess Technology11(8), 1552–1565.‏

  • Bartelds, R., Nematollahi, M. H., Pols, T., Stuart, M. C. A., Pardakhty, A., Asadikaram, G., Poolman, B. (2018) Niosomes, an alternative for liposomal delivery. PLOS ONE, 13(4), e0194179.

  • Basiri, L., Rajabzadeh, G., & Bostan, A. (2017). α-Tocopherol-loaded niosome prepared by heating method and its release behavior. Food Chemistry, 221, 620–628.

    Article  CAS  Google Scholar 

  • Brandelli, A. (2020). The interaction of nanostructured antimicrobials with biological systems: Cellular uptake, trafficking and potential toxicity. Food Science and Human Wellness, 9(1), 8–20.

    Article  Google Scholar 

  • Caddeo, C., Manconi, M., Fadda, A. M., Lai, F., Lampis, S., Diez-Sales, O., & Sinico, C. (2013). Nanocarriers for antioxidant resveratrol: Formulation approach, vesicle self-assembly, and stability evaluation. Colloids and Surfaces B: Bio Interfaces, 111, 327–332.

    Article  CAS  Google Scholar 

  • Chaves, N., Santiago, A., & Alías, J. C. (2020). Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants, 9(1), 76.

    Article  CAS  Google Scholar 

  • Dairi, S., Carbonneau, M. A., Galeano-Diaz, T., Remini, H., Dahmoune, F., Aoun, O., & Madani, K. (2017). Antioxidant effects of extra virgin olive oil-enriched by myrtle phenolic extracts on iron-mediated lipid peroxidation under intestinal conditions model. Food Chemistry, 237, 297–304.

    Article  CAS  Google Scholar 

  • Dave, V., Yadav, R. B., Kushwaha, K., Yadav, S., Sharma, S., & Agrawal, U. (2017). Lipid-polymer hybrid nanoparticles: Development & statistical optimization of norfloxacin for topical drug delivery system. Bioactive Materials, 2(4), 269–280.

    Article  Google Scholar 

  • de Moura, S. C., Schettini, G. N., Garcia, A. O., Gallina, D. A., Alvim, I. D., & Hubinger, M. D. (2019). Stability of hibiscus extract encapsulated by ionic gelation incorporated in yogurt. Food and Bioprocess Technology, 12(9), 1500–1515.

    Article  Google Scholar 

  • Erami, S. R., Amiri, Z. R., & Jafari, S. M. (2019). Nanoliposomal encapsulation of Bitter Gourd (Momordica charantia) fruit extract as a rich source of health-promoting bioactive compounds. LWT116, 108581.

  • Fathi, M., Varshosaz, J., Mohebbi, M., & Shahidi, F. (2013). Hesperetin-loaded solid lipid nanoparticles and nanostructure lipid carriers for food fortification: Preparation, characterization, and modeling. Food and Bioprocess Technology, 6(6), 1464–1475.

    Article  CAS  Google Scholar 

  • Gorjian, H., Amiri, Z. R., Milani, J. M., & Khaligh, N. G. (2021). Preparation and characterization of the encapsulated myrtle extract nanoliposome and nanoniosome without using cholesterol and toxic organic solvents: A Comparative Study. Food Chemistry, 128342.

  • Gortzi, O., Lalas, S., Chinou, I., & Tsaknis, J. (2008). Reevaluation of bioactivity and antioxidant activity of Myrtus communis extract before and after encapsulation in liposomes. European Food Research and Technology, 226(3), 583–590.

    Article  CAS  Google Scholar 

  • Hennia, A., Miguel, M. G., & Nemmiche, S. (2018). Antioxidant activity of Myrtus communis L. and Myrtus nivellei Batt. & Trab. extracts: A brief review. Medicines5(3), 89.‏

  • Huang, J., Wu, M., Yang, K., Zhao, M., Wu, D., Ma, J., & Sun, W. (2020). Effect of nanoliposomal entrapment on antioxidative hydrolysates from goose blood protein. Journal of Food Science, 85(10), 3034–3042.

    Article  CAS  Google Scholar 

  • Janakirama, A. R. R. S., Shivayogi, S. M., Satyanarayana, J. K., & Kumaran, R. C. (2021). Characterization of isolated compounds from Morus spp. and their biological activity as anticancer molecules. BioImpacts: BI11(3), 187.‏

  • Jansen-Alves, C., Krumreich, F. D., Zandoná, G. P., Gularte, M. A., Borges, C. D., & Zambiazi, R. C. (2019). Production of propolis extract microparticles with concentrated pea protein for application in food. Food and Bioprocess Technology, 12(5), 729–740.

    Article  CAS  Google Scholar 

  • Khameneh, B., Iranshahy, M., Soheili, V., & Bazzaz, B. S. F. (2019). Review on plant antimicrobials: A mechanistic viewpoint. Antimicrobial Resistance & Infection Control, 8(1), 1–28.

    Article  Google Scholar 

  • Khoee, S., & Yaghoobian, M. (2017). Niosomes: A novel approach in modern drug delivery systems. In Nanostructures for drug delivery. Elsevier. 207–237.‏

  • Kranenburg, M., & Smit, B. (2005). Phase behavior of model lipid bilayers. The Journal of Physical Chemistry B, 109(14), 6553–6563.

    Article  CAS  Google Scholar 

  • Lasic, D. D. (1993). Liposomes: From physics to application Elsevier. Amsterdam, New York.

  • Lewoyehu, M., & Amare, M. (2019). Comparative evaluation of analytical methods for determining the antioxidant activities of honey: A review. Cogent Food & Agriculture, 5(1), 1685059.

    Article  Google Scholar 

  • Mozafari, M. R., Johnson, C., Hatziantoniou, S., & Demetzos, C. (2008). Nanoliposomes and their applications in food nanotechnology. Journal of Liposome Research, 18(4), 309–327.

    Article  Google Scholar 

  • Ngamakeue, N., & Chitprasert, P. (2016). Encapsulation of holy basil essential oil in gelatin: Effects of palmitic acid in carboxymethyl cellulose emulsion coating on antioxidant and antimicrobial activities. Food and Bioprocess Technology, 9(10), 1735–1745.

    Article  CAS  Google Scholar 

  • Oliva, R., Chino, M., Pane, K., Pistorio, V., De Santis, A., Pizzo, E., & Petraccone, L. (2018). Exploring the role of unnatural amino acids in antimicrobial peptides. Scientific Reports, 8(1), 1–16.

    Google Scholar 

  • Parvekar, P., Palaskar, J., Metgud, S., Maria, R., & Dutta, S. (2020). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomaterial Investigations in Dentistry, 7(1), 105–109.

    Article  CAS  Google Scholar 

  • Pereira, J. A., Oliveira, I., Sousa, A., Valentão, P., Andrade, P. B., Ferreira, I. C., & Estevinho, L. (2007). Walnut (Juglans regia L.) leaves: Phenolic compounds, antibacterial activity, and antioxidant potential of different cultivars. Food and Chemical Toxicology45(11), 2287–2295.

  • Pinilla, C. M. B., Reque, P. M., & Brandelli, A. (2020). Effect of oleic acid, cholesterol, and octadecylamine on membrane stability of freeze-dried liposomes encapsulating natural antimicrobials. Food and Bioprocess Technology, 13(4), 599–610.

    Article  CAS  Google Scholar 

  • Raeiszadeha, M., Pardakhtyc, A., Sharififara, F., Mehrabanid, M., Nejatmehrab-kermanie, H., & Mehrabani, M. (2018). Phytoniosome: A novel drug delivery for Myrtle extract. Iranian Journal of Pharmaceutical Research: IJPR, 17(3), 804.

    Google Scholar 

  • Ribeiro, A. M., Estevinho, B. N., & Rocha, F. (2019). Spray drying encapsulation of elderberry extract and evaluating the release and stability of phenolic compounds in encapsulated powders. Food and Bioprocess Technology, 12(8), 1381–1394.

    Article  CAS  Google Scholar 

  • Rivero-Cruz, J. F., Granados-Pineda, J., Pedraza-Chaverri, J., Pérez-Rojas, J. M., Kumar-Passari, A., Diaz-Ruiz, G., & Rivero-Cruz, B. E. (2020). Phytochemical constituents, antioxidant, cytotoxic, and antimicrobial activities of the ethanolic extract of Mexican brown propolis. Antioxidants, 9(1), 70.

    Article  CAS  Google Scholar 

  • Rumbaoa, R. G. O., Cornago, D. F., & Geronimo, I. M. (2009). Phenolic content and antioxidant capacity of Philippine potato (Solanum tuberosum) tubers. Journal of Food Composition and Analysis, 22(6), 546–550.

    Article  CAS  Google Scholar 

  • Rutherford, D., Jíra, J., Kolářová, K., Matolínová, I., Mičová, J., Remeš, Z., & Rezek, B. (2021). Growth inhibition of gram-positive and gram-negative bacteria by zinc oxide hedgehog particles. International Journal of Nanomedicine, 16, 3541.

    Article  Google Scholar 

  • Savaghebi, D., Barzegar, M., & Mozafari, M. R. (2020). Manufacturing of nanoliposomal extract from Sargassum boveanum algae and investigating its release behavior and antioxidant activity. Food Science & Nutrition, 8(1), 299–310.

    Article  CAS  Google Scholar 

  • Saadat, S., Emam-Djomeh, Z., & Askari, G. (2021). Antibacterial and antioxidant gelatin nanofiber scaffold containing ethanol extract of pomegranate peel: Design, characterization and in vitro assay. Food and Bioprocess Technology, 14(5), 935–944.

    Article  CAS  Google Scholar 

  • Savaghebi, D., Ghaderi-Ghahfarokhi, M., & Barzegar, M. (2021). Encapsulation of Sargassum boveanum Algae extract in nano-liposomes: Application in functional mayonnaise production. Food and Bioprocess Technology, 1–15.‏

  • Sessa, M., Casazza, A. A., Perego, P., Tsao, R., Ferrari, G., & Donsì, F. (2013). Exploitation of polyphenolic extracts from grape marc as natural antioxidants by encapsulation in lipid-based nanodelivery systems. Food and Bioprocess Technology, 6(10), 2609–2620.

    Article  CAS  Google Scholar 

  • Souza, M. P., Vaz, A. F., Correia, M. T., Cerqueira, M. A., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2014). Quercetin-loaded lecithin/chitosan nanoparticles for functional food applications. Food and Bioprocess Technology, 7(4), 1149–1159.

    Article  CAS  Google Scholar 

  • Shashidhar, G. M., & Manohar, B. (2018). Nanocharacterization of liposomes for the encapsulation of water soluble compounds from Cordyceps sinensis CS1197 by a supercritical gas anti-solvent technique. RSC Advances, 8(60), 34634–34649.

    Article  CAS  Google Scholar 

  • Tavares, L., Barros, H. L. B., Vaghetti, J. C. P., & Noreña, C. P. Z. (2019). Microencapsulation of garlic extract by complex coacervation using whey protein isolate/chitosan and gum Arabic/chitosan as wall materials: Influence of anionic biopolymers on the physicochemical and structural properties of microparticles. Food and Bioprocess Technology, 12(12), 2093–2106.

    Article  CAS  Google Scholar 

  • Tavassoli-Kafrani, E., Goli, S. A. H., & Fathi, M. (2018). Encapsulation of orange essential oil using cross-linked electrospun gelatin nanofibers. Food and Bioprocess Technology, 11(2), 427–434.

    Article  CAS  Google Scholar 

  • Ulkowski, M., Musialik, M., & Litwinienko, G. (2005). Use of differential scanning calorimetry to study lipid oxidation. 1. Oxidative stability of lecithin and linolenic acid. Journal of agricultural and food chemistry53(23), 9073–9077.

  • Weerakody, R., Fagan, P., & Kosaraju, S. L. (2008). Chitosan microspheres for encapsulation of α-lipoic acid. International Journal of Pharmaceutics, 357(1–2), 213–218.

    Article  CAS  Google Scholar 

  • Zhao, Y., Cai, F., Shen, X., & Su, H. (2020). A high stable pH-temperature dual-sensitive liposome for tuning anticancer drug release. Synthetic and Systems Biotechnology, 5(2), 103–110.

    Article  Google Scholar 

  • Zou, L. Q., Liu, W., Liu, W. L., Liang, R. H., Li, T., Liu, C. M., & Liu, Z. (2014). Characterization and bioavailability of tea polyphenol nanoliposome prepared by combining an ethanol injection method with dynamic high-pressure microfluidization. Journal of Agricultural and Food Chemistry, 62(4), 934–941.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Sari Agricultural Sciences and Natural Resources University for analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeynab Raftani Amiri.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorjian, H., Raftani Amiri, Z., Mohammadzadeh Milani, J. et al. Influence of Nanovesicle Type, Nanoliposome and Nanoniosome, on Antioxidant and Antimicrobial Activities of Encapsulated Myrtle Extract: A Comparative Study. Food Bioprocess Technol 15, 144–164 (2022). https://doi.org/10.1007/s11947-021-02747-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-021-02747-3

Keywords

Navigation