Skip to main content
Log in

Reevaluation of bioactivity and antioxidant activity of Myrtus communis extract before and after encapsulation in liposomes

  • Original Peper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The antioxidant and antimicrobial activity of Myrtus communis extract was determined before and after its encapsulation in liposomes of different composition. Evaluation of the sunflower oil oxidation by the Rancimat stability test and malondialdehyde formation by HPLC were used to measure the antioxidant action in comparison with common commercial antioxidants, such as butylated hydroxytoluene and α-tocopherol. The thermal-oxidative decomposition of the samples, the modification of the main transition temperature for the lipid mixture and the splitting of the calorimetric peak in the presence of the antioxidants were studied by differential scanning calorimetry. The size and the surface charge of liposomes were also studied. The extract showed antioxidant and antimicrobial activity. Αt concentrations up to 160 ppm, the extract showed superior activity than α-tocopherol. When the extract was encapsulated in liposomes, its antioxidant as well as its antimicrobial activity proved to be superior from that of itself in pure form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdalla AE, Roozen JP (2001) Europ Food Res Technol 212:551–560

    Article  CAS  Google Scholar 

  2. Barratt GM (2000) Pharm Sci Technol Today 3:163–171

    Article  CAS  Google Scholar 

  3. Bauer AW, Kirby WMM, Sherris JC, Turcu M (1966) Am J Clin Pathol 45:493–496

    CAS  Google Scholar 

  4. Chorianopoulos N, Kalpoutzakis E, Aligiannis N, Mitaku S, Nychas GJ, Haroutounian SA (2004) J Agric Food Chem 52:8261–8267

    Article  CAS  Google Scholar 

  5. Dewdney PA, Meara ML (1977) Sci Tech Surv 96:1–34

    Google Scholar 

  6. El Jastimi R, Edwards K, Lafleur M (1999) Biophys J 77:842–852

    Article  CAS  Google Scholar 

  7. Fang JY, Hung CF, Hwang TL, Huang YL (2005) J Drug Target 13:19–27

    Article  CAS  Google Scholar 

  8. Flamini G, Cioni PL, Morelli I, Maccioni S, Baldini R (2004) Food Chem 85:599–604

    Article  CAS  Google Scholar 

  9. Giuffrida F, Destaillats F, Egart MH, Hug B, Golay PA, Skibsted LH, Dionisi F (2007) Food Chem 101:1108–1114

    Article  CAS  Google Scholar 

  10. Gortzi O, Lalas S, Chinou I, Tsaknis J (2006) J Food Protect 69:2998–3005

    Google Scholar 

  11. Jayasinghe C, Gotoh N, Aoki T, Wada S (2003) J Agric Food Chem 51:4442–4449

    Article  CAS  Google Scholar 

  12. Keller BC (2001) Trends in Food Sci Tech 12:25–31

    Article  CAS  Google Scholar 

  13. Lalas S, Dourtoglou V (2003) J Am Oil Chem Soc 80:579–583

    Article  CAS  Google Scholar 

  14. Lalas S, Tsaknis J (2002) J Am Oil Chem Soc 79:677–683

    Article  CAS  Google Scholar 

  15. Lawrence SM, Alpar HO, McAllister SM, Brown MRW (1993) J Drug Target 1:303–310

    Article  CAS  Google Scholar 

  16. Litwinienko G, Kasprzycka-Guttman T, Studzinski M (1997) Thermochim Acta 331:97–106

    Article  Google Scholar 

  17. Mansouri S, Foroumadi A, Ghaneie T, Najar AG (2001) Pharm Biol 39:399–401

    Article  Google Scholar 

  18. Mendes MM, Gazarini LC, Rodrigues ML (2001) Environ Exp Bot 45:165–178

    Article  CAS  Google Scholar 

  19. New RRC (1990) Liposomes a practical approach. Oxford University Press, New York

    Google Scholar 

  20. Nguefack J, Leth V, Amvam Zollo PH, Mathur SB (2004) Int J Food Microbiol 94:329–334

    Article  CAS  Google Scholar 

  21. Ozek T, Demirci B, Baser KHC (2000) J Essent Oil Res 12:541–544

    CAS  Google Scholar 

  22. Özer Y, Talsma H, Crommelin DJA, Hical AA (1988) Acta Pharm Technol 34:129–139

    Google Scholar 

  23. Schiffelers RM, Bakker-Woudenberg IAJM, Snijders SV, Storm G (1999) Biochim Biophys Acta-Biomembranes 1421:329–339

    Article  CAS  Google Scholar 

  24. Schuler P (1990) Natural antioxidants exploited commercially. In: Hudson BJF (eds) Food antioxidants. Elsevier Applied Science, London, pp 99–170

    Google Scholar 

  25. Shahidi Bonjar GH (2004) Fitoterapia 75:231–235

    Article  Google Scholar 

  26. Socaciu C, Jessel R, Diehl HA (2000) Chem Phys Lipids 106:79–88

    Article  CAS  Google Scholar 

  27. Sułkowski WW, Pentak D, Nowak K, Sułkowska A (2005) J Mol Struct 744–747:737–747

    Article  CAS  Google Scholar 

  28. Tan CP, Che Man YB (2002) Trends Food Sci Tech 13:312–318

    Article  CAS  Google Scholar 

  29. Tsaknis J, Hole M, Smith G, Lalas S, Tychopoulos V (1998) Analyst 123:325–327

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study has been co-funded by 75% from European Union and 25% from the Greek Government under the framework of the Education and Initial Vocational Training Program—EPEAEK I Archimedes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavros Lalas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gortzi, O., Lalas, S., Chinou, I. et al. Reevaluation of bioactivity and antioxidant activity of Myrtus communis extract before and after encapsulation in liposomes. Eur Food Res Technol 226, 583–590 (2008). https://doi.org/10.1007/s00217-007-0592-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-007-0592-1

Keywords

Navigation