Skip to main content
Log in

Preparation, characterization, and antioxidant activity of nanoliposomes-encapsulated turmeric and omega-3

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The general tendency of society to use natural extracts as antimicrobial, antioxidant and preservative compounds has increased in recent years. Nanoliposomes are a class of nano-carriers based on polar lipids that like the ability to encapsulate hydrophilic active compounds and lyophilic compounds. The aim of this study was to encapsulate turmeric extract and omega 3 with lecithin in different ratios and to investigate the properties of encapsulated nanoliposomes. Encapsulation tests, particle size, zeta potential with zeta sizer, antioxidant activity were determined by total phenol content, DPPH radical scavenging method, ABST scavenging and antimicrobial properties were determined by well method. A 1:12 ratio of turmeric-omega-3 to lecithin had the largest particle size. For release in simulated gastrointestinal environments, all treatments had the burst release for the first 15 min. After one hour, the release was almost stable. In general, the high efficiency of encapsulation (above 50%) in the treatments showed that the encapsulation method was effective. The amount of total phenolic compounds of turmeric extract (concentration 100 μg/ml) was equal to 4.81 mg/ml.The results of the analysis of variance showed that there was a significant difference (P < 0.05) between reducing power, DPPH and ABTS radical inhibition and different concentrations of encapsulation turmeric extract. The maximum diameter of the inhibition zone (IZ) was related to the concentration of 100 mg/ml of the extract and the lowest was related to the samples with the concentration of 50 and 25.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data are presented in the manuscript.

References

  1. A. Mehdizadeh, S.A. Shahidi, N. Shariatifar, M. Shiran, A. Ghorbani-HasanSaraei, Evaluation of chitosan-zein coating containing free and nano-encapsulated Pulicaria gnaphalodes (Vent.) Boiss. Extract on quality attributes of rainbow trout. J. Aquat. Food Product Technol. 30(1), 62–75 (2021)

    Article  CAS  Google Scholar 

  2. S.A. Shahidi, Effect of solvent type on ultrasound-assisted extraction of antioxidant compounds from Ficaria kochii: optimization by response surface methodology. Food Chem. Toxicol. 163, 112981 (2022)

    Article  CAS  PubMed  Google Scholar 

  3. B. Armendáriz-Barragán, N. Zafar, W. Badri, S.A. Galindo-Rodríguez, D. Kabbaj, H. Fessi, A. Elaissari, Plant extracts: from encapsulation to application. Expert Opin. Drug Deliv. 13(8), 1165–1175 (2016)

    Article  PubMed  Google Scholar 

  4. K. Singletary, Turmeric: potential health benefits. Nutr. Today 55(1), 45–56 (2020)

    Article  Google Scholar 

  5. R.P. Yadav, G. Tarun, C. Roshan, P. Yadav, Versatility of turmeric: a review the golden spice of life. J Pharmacogn Phytochem 6(1), 41–46 (2017)

    Google Scholar 

  6. P. Lertsutthiwong, P. Rojsitthisak, Chitosan-alginate nanocapsules for encapsulation of turmeric oil. Die Pharmazie- Int. J. Phar. Sci. 66(12), 911–915 (2011)

    CAS  Google Scholar 

  7. E. Feizollahi, Z. Hadian, Z. Honarvar, Food fortification with omega-3 fatty acids; microencapsulation as an addition method. Curr. Nutr. Food Sci. 14(2), 90–103 (2018)

    Article  CAS  Google Scholar 

  8. D.G. Oonincx, S. Laurent, M.E. Veenenbos, J.J. van Loon, Dietary enrichment of edible insects with omega 3 fatty acids. Insect Sci. 27(3), 500–509 (2020)

    Article  CAS  PubMed  Google Scholar 

  9. B. Rasti, A. Erfanian, J. Selamat, Novel nanoliposomal encapsulated omega-3 fatty acids and their applications in food. Food Chem. 230, 690–696 (2017)

    Article  CAS  PubMed  Google Scholar 

  10. P. Lertsutthiwong, K. Noomun, N. Jongaroonngamsang, P. Rojsitthisak, U. Nimmannit, Preparation of alginate nanocapsules containing turmeric oil. Carbohyd. Polym. 74(2), 209–214 (2008)

    Article  CAS  Google Scholar 

  11. J. Aala, M. Ahmadi, L. Golestan, S.A. Shahidi, N. Shariatifar, Effect of multifactorial free and liposome-coated of bay laurel (Laurus nobilis) and rosemary (Salvia rosmarinus) extracts on the behavior of Listeria monocytogenes and Vibrio parahaemolyticus in silver carp (Hypophthalmichthys molitrix) stored at 4 °C. Environ. Res. 216, 114478 (2023)

    Article  CAS  PubMed  Google Scholar 

  12. N.J. Zuidam, V. Nedovic, Encapsulation technologies for active food ingredients and food processing (Springer, Dordrecht, 2010), pp. 3–29

    Book  Google Scholar 

  13. V. Nedovic, A. Kalusevic, V. Manojlovic, S. Levic, B. Bugarski, An overview of encapsulation technologies for food applications. Procedia Food Sci. 1, 1806–1815 (2011)

    Article  CAS  Google Scholar 

  14. M.R. Mozafari, Nanoliposomes: preparation and analysis, in liposomes. ed. by V. Weissig (Springer, New York, 2010), pp.29–50

    Chapter  Google Scholar 

  15. H. Almasi, M. Zandi, S. Beigzadeh, S. Haghju, N. Mehrnow, Chitosan films incorporated with nettle (Urtica Dioica L.) extract-loaded nanoliposomes: II. Antioxidant activity and release properties. J. microencapsul. 33(5), 449–459 (2016)

    Article  CAS  PubMed  Google Scholar 

  16. S. Emami, M. Ahmadi, L.R. Nasiraie, S.A. Shahidi, H. Jafarizadeh-Malmiri, Cinnamon extract and its essential oil nanoliposomes–preparation, characterization and bactericidal activity assessment. Biologia 77(10), 3015–3025 (2022)

    Article  CAS  Google Scholar 

  17. J. Lopez-Polo, A. Monasterio, P. Cantero-López, F.A. Osorio, Combining edible coatings technology and nanoencapsulation for food application: a brief review with an emphasis on nanoliposomes. Food Res. Int. 145, 110402 (2021)

    Article  CAS  PubMed  Google Scholar 

  18. A. Mehdizadeh, S.-A. Shahidi, N. Shariatifar, M. Shiran, A. Ghorbani-HasanSaraei, Physicochemical characteristics and antioxidant activity of the chitosan/zein films incorporated with Pulicaria gnaphalodes L. extract-loaded nanoliposomes. J. Food Meas. Charact. 16(2), 1252–1262 (2022)

    Article  Google Scholar 

  19. A. Rashidinejad, E.J. Birch, D. Sun-Waterhouse, D.W. Everett, Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese. Food Chem. 156, 176–183 (2014)

    Article  CAS  PubMed  Google Scholar 

  20. S. Amiri, B. Ghanbarzadeh, H. Hamishehkar, M. Hosein, A. Babazadeh, P. Adun, Vitamin E loaded nanoliposomes: effects of gammaoryzanol, polyethylene glycol and lauric acid on physicochemical properties. Colloid Interface Sci. Commun. 26, 1–6 (2018)

    Article  CAS  Google Scholar 

  21. M. Danaei, M. Kalantari, M. Raji, H.S. Fekri, R. Saber, G. Asnani, S. Mortazavi, M. Mozafari, B. Rasti, A. Taheriazam, Probing nanoliposomes using single particle analytical techniques: effect of excipients, solvents, phase transition and zeta potential. Heliyon 4(12), e01088 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. X. Chen, L.-Q. Zou, J. Niu, W. Liu, S.-F. Peng, C.-M. Liu, The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Molecules 20(8), 14293–14311 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. A. Yıldırım, A. Mavi, A.A. Kara, Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J. Agric. Food Chem. 49(8), 4083–4089 (2001). https://doi.org/10.1021/jf0103572

    Article  CAS  PubMed  Google Scholar 

  24. I.O. Chikezie, Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using a novel dilution tube method. Afr. J. Microbiol. Res. 11(23), 977–980 (2017)

    Article  Google Scholar 

  25. K.-K. Li, S.-W. Yin, X.-Q. Yang, C.-H. Tang, Z.-H. Wei, Fabrication and characterization of novel antimicrobial films derived from thymol-loaded zein–sodium caseinate (SC) nanoparticles. J. Agric. Food Chem. 60(46), 11592–11600 (2012)

    Article  CAS  PubMed  Google Scholar 

  26. Y. Zhang, Y. Niu, Y. Luo, M. Ge, T. Yang, L.L. Yu, Q. Wang, Fabrication, characterization and antimicrobial activities of thymol-loaded zein nanoparticles stabilized by sodium caseinate–chitosan hydrochloride double layers. Food Chem. 142, 269–275 (2014)

    Article  CAS  PubMed  Google Scholar 

  27. F. Karimi, Y. Hamidian, F. Behrouzifar, R. Mostafazadeh, A. Ghorbani-HasanSaraei, M. Alizadeh, S.M. Mortazavi, M. Janbazi, P.N. Asrami, An applicable method for extraction of whole seeds protein and its determination through Bradford’s method. Food Chem. Toxicol. 164, 113053 (2022)

    Article  CAS  PubMed  Google Scholar 

  28. K. Kato, M. Koido, M. Kobayashi, T. Akagi, T. Ichiki, Statistical fluctuation in zeta potential distribution of nanoliposomes measured by on-chip microcapillary electrophoresis. Electrophoresis 34(8), 1212–1218 (2013)

    Article  CAS  PubMed  Google Scholar 

  29. M.A. Khan, C. Yue, Z. Fang, S. Hu, H. Cheng, A.M. Bakry, L. Liang, Alginate/chitosan-coated zein nanoparticles for the delivery of resveratrol. J. Food Eng. 258, 45–53 (2019)

    Article  CAS  Google Scholar 

  30. G. Ke, W. Xu, W. Yu, Preparation and properties of drug-loaded chitosan-sodium alginate complex membrane. Int. J. Polym. Mater. 59(3), 184–191 (2010)

    Article  CAS  Google Scholar 

  31. R. Sedghi, A. Shaabani, Electrospun biocompatible core/shell polymer-free core structure nanofibers with superior antimicrobial potency against multi drug resistance organisms. Polymer 101, 151–157 (2016)

    Article  CAS  Google Scholar 

  32. A. Rezaei, A. Nasirpour, Evaluation of release kinetics and mechanisms of curcumin and curcumin-β-cyclodextrin inclusion complex incorporated in electrospun almond gum/PVA nanofibers in simulated saliva and simulated gastrointestinal conditions. BioNanoScience 9(2), 438–445 (2019)

    Article  Google Scholar 

  33. P. Kolahi, H. Shekarchizadeh, A. Nasirpour, Effect of combination of ultrasonic treatment and anti-solvent methods as a high-efficiency method of nanoparticle production on the tragacanth gum properties. J. Food Sci. Technol. 59(3), 1131–1139 (2022)

    Article  CAS  PubMed  Google Scholar 

  34. R. Malviya, P.K. Sharma, S.K. Dubey, Efficiency of self-assembled etoricoxib containing polyelectrolyte complex stabilized cubic nanoparticles against human cancer cells. Precis. Med. Sci. 9(1), 9–22 (2020)

    Article  CAS  Google Scholar 

  35. Z. Ding, T. Tao, X. Wang, S. Prakash, Y. Zhao, J. Han, Z. Wang, Influences of different carbohydrates as wall material on powder characteristics, encapsulation efficiency, stability and degradation kinetics of microencapsulated lutein by spray drying. Int. J. Food Sci. Technol. 55(7), 2872–2882 (2020)

    Article  CAS  Google Scholar 

  36. Sukati, S., & Khobjai, W, Total phenolic content and DPPH free radical scavenging activity of young turmeric grown in southern Thailand. In Applied Mechanics and Materials (Vol. 886, pp. 61–69). Trans Tech Publications Ltd. 2019. https://doi.org/10.4028/www.scientific.net/AMM.886.61

  37. F. Khademi, S.N. Raeisi, M. Younesi, A. Motamedzadegan, K. Rabiei, M. Shojaei, H. Rokni, M. Falsafi, Effect of probiotic bacteria on physicochemical, microbiological, textural, sensory properties and fatty acid profile of sour cream. Food Chem. Toxicol. 166, 113244 (2022)

    Google Scholar 

  38. A.F. Hashim, S.F. Hamed, H.A.A. Hamid, K.A. Abd-Elsalam, I. Golonka, W. Musiał, I.M. El-Sherbiny, Antioxidant and antibacterial activities of omega-3 rich oils/curcumin nanoemulsions loaded in chitosan and alginate-based microbeads. Int. J. Biol. Macromol. 140, 682–696 (2019)

    Article  CAS  PubMed  Google Scholar 

  39. D.C. Coraça-Huber, S. Steixner, A. Wurm, M. Nogler, Antibacterial and anti-biofilm activity of omega-3 polyunsaturated fatty acids against periprosthetic joint infections-isolated multi-drug resistant strains. Biomedicines 9(4), 334 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  40. D. Mil-Homens, N. Bernardes, A.M. Fialho, The antibacterial properties of docosahexaenoic omega-3 fatty acid against the cystic fibrosis multiresistant pathogen Burkholderia cenocepacia. FEMS Microbiol. Lett. 328(1), 61–69 (2012)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ahmadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadiri Amrei, S.M.H., Ahmadi, M., Shahidi, SA. et al. Preparation, characterization, and antioxidant activity of nanoliposomes-encapsulated turmeric and omega-3. Food Measure 17, 2697–2707 (2023). https://doi.org/10.1007/s11694-022-01785-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01785-5

Keywords

Navigation