Skip to main content
Log in

Physico-chemical, Sensory, and Antioxidant Characteristics of Olive Paste Enriched with Microencapsulated Thyme Essential Oil

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In this study, thyme essential oil (TEO), a natural antimicrobial and antioxidant substance, was encapsulated by a complex coacervation method using gum Arabic and gelatin as wall material and tannic acid as a crosslinking agent. The quality characteristics of the olive paste samples, which were aimed to be increased by adding TEO (1000 mg/kg) and TEO microcapsules, were determined at 4 °C and 25 °C during the storage period of 56 days. Physico-chemical, sensory, and antioxidant activity analyses were performed on all olive paste samples during the storage period. The thymol and carvacrol contents of the enriched olive paste samples were quantified by high-performance liquid chromatography (HPLC). The enrichment of olive paste samples with microencapsulated TEO resulted in an increase in sensory properties with the total dry matter, color scores (L*, a*, and b*), total phenolic content, thymol, and carvacrol content, while a decrease in peroxide value and total mesophilic aerobic bacteria content. The results showed that the microcapsule structure preserved TEO during storage, the antioxidant activity of olive paste samples enriched with TEO microcapsules increased, and thus, the enriched olive paste could be stored in a safer and higher quality than control samples. Therefore, using microcapsules containing TEO in olive paste samples may be a suitable method to produce functional foods with antioxidant properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ahmed, J., Kaur, A., & Shivhare, U. (2002). Color degradation kinetics of spinach, mustard leaves and mixed puree. Journal of Food Science, 67(3), 1088–1091

    Article  CAS  Google Scholar 

  • Aka-Kayguluoglu, A., Akpinar-Bayizit, A., & Sahin-Cebeci, O. I. (2014). Evaluation of physicochemical and sensory properties of green olive pastes. Indian Journal of Traditional Knowledge, 13(4), 654–658

    Google Scholar 

  • Albahari, P., Jug, M., Radic, K., Jurmanovic, S., Brncic, M., Brincic, S. R., & Cepo, D. V. (2018). Characterization of olive pomace extract obtained by cyclodextrin-enhanced pulsed ultrasound assisted extraction. LWT-Food Science and Technology, 92, 22–31

    Article  CAS  Google Scholar 

  • Alhamad, M. N., Rababah, T. M., & Al-u’datt, M., Ereifej, K., Esoh, R., Feng, H., & Yang, W. (2017). The physicochemical properties, total phenolic, antioxidant activities and phenolic profile of fermented olive cake. Arabian Journal of Chemistry, 10(1), 136–140

    Article  CAS  Google Scholar 

  • Anonymous. (1989). Turkish Standard Institute, TS 7630/T2, 09.03.2010, Olive Paste Standard

  • Antunes, A. E. C., Liserre, A. M., Coelho, A. L. A., Menezes, C. R., Moreno, I., Yotsuyanagi, K., & Azambuja, N. C. (2013). Acerola nectar with added microencapsulated probiotic. LWT—Food Science and Technology, 54, 125–131

  • AOAC 925.40. (1995). AOAC Official Methods of Analysis 16 Association of Analytical Chemists

  • AOAC 948.22. (2000). Official Methods of Analysis, 17th ed.; Horwitz W., Ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2000; Volume II, pp. 1–3

  • BAM (Bacteriological Analytical Manual). (2001). Chapter 3, Aerobic plate count, https://www.fda.gov/food/foodscienceresearch/laboratorymethods/ucm063346.htm (Date of access: 20 July 2019)

  • Ban, Z., Zhang, J., Lic, L., Luoc, Z., Wanga, Y., Yuana, Q., Zhoud, B., & Liub, H. (2020). Ginger essential oil-based microencapsulation as an efficient delivery system for the improvement of Jujube (Ziziphus jujuba Mill.) fruit quality. Food Chemistry, 306, 125628

  • Boulekbache-Makhlouf, L., Slimani, S., & Madani, K. (2013). Total phenolic content, antioxidant and antibacterial activities of fruits of Eucalyptus globulus cultivated in Algeria. Industrial Crops and Products, 41, 85–89

    Article  CAS  Google Scholar 

  • Brand-Williams, W., Cuveller, M., & Berset, C. (1995). Use of free redical method to evaluate antioxidant activitiy. Lebensmittel Wissenschaft Und Technologie, 28, 25–30

    Article  CAS  Google Scholar 

  • Cam, M., Icyer, N. C., & Erdogan, F. (2014). Pomegranate peel phenolics: Microencapsulation, storage stability and potential ingredient for functional food development. LWT-Food Science and Technology, 55(1), 117–123

    Article  CAS  Google Scholar 

  • Clodoveo, M. S., Durante, V., la Notte, D., Punzi, R., & Gambacorta, G. (2013). Ultrasound-assisted extraction of virgin olive oil to improve the process efficiency. European Journal of Lipid Science and Technology, 115, 1062–1069

    Article  CAS  Google Scholar 

  • Estrada-Cano, C., Anaya Castro, M. A., Muñoz-Castellanos, L., Amaya-Olivas, N., García-Triana, A., & Hernández-Ochoa, L. (2017). Antifungal activity of microcapsulated clove (Eugenia caryophyllata) and Mexican oregano (Lippia berlandieri) essential oils against Fusarium oxysporum. Journal of Microbial and Biochemical Technology, 9, 567–571

    Article  CAS  Google Scholar 

  • Ezhilarasi, P. N., Indrani, D., Jena, B. S., & Anandharamakrishnan, C. (2013). Freeze drying technique for microencapsulation of Garcinia fruit extract and its effect on bread quality. Journal of Food Engineering, 117(4), 513–520

    Article  CAS  Google Scholar 

  • Favaro-Trindade, C. D., de Pinho, S. C., & Rocha, G. A. (2008). Revisao: Microencapsulaçao de ingrediente salimenticios. Brazilian Journal of Food Technology, 11, 103–112

    CAS  Google Scholar 

  • Favaro-Trindade, C. S., Patel, B., Silva, M. P., Comuniana, T. A., Federici, E., Jones, O. G., & Campanella, O. H. (2020). Microencapsulation as a tool to producing an extruded functional food. LWT-Food Science and Technology, 128, 109433

  • Girardi, N. S., García, D., Robledo, S. N., Passone, M. A., Nesci, A., & Etcheverry, M. (2016). Microencapsulation of Peumus boldus oil by complex coacervation to provide peanut seeds protection against fungal pathogens. Industrial Crops and Products, 92, 93–101

    Article  CAS  Google Scholar 

  • Girardi, N. S., García, D., Passone, M. A., Nesci, A., & Etcheverry, M. (2017). Microencapsulation of Lippia turbinata essential oil and its impact on peanut seed quality preservation. International Biodeterioration and Biodegradation, 116, 227–233

    Article  CAS  Google Scholar 

  • Guerrini, L., Masella, P., Angeloni, G., Migliorini, M., & Parenti, A. (2017). Changes in olive paste composition during decanter feeding and effects on oil yield. European Journal of Lipid Science and Technology, 119, 1700223

    Article  Google Scholar 

  • Iqdiam, B. M., Mostafa, H., Goodrich-Schneider, R., Baker, G. L., Welt, B., & Marshall, M. R. (2018). High power ultrasound: Impact on olive paste temperature, malaxation time, extraction efficiency, and characteristics of extra virgin olive oil. Food and Bioprocess Technology, 11, 634–644

    Article  CAS  Google Scholar 

  • ISO 734 (2015). Oilseed meals, Determination of oil content, TS EN ISO 734 

  • Jafari, S. M., Ghanbari, V., Dehnad, D., & Ganje, M. (2021). Improving the storage stability of tomato paste by the addition of encapsulated olive leaf phenolics and experimental growth modeling of A. Flavus. International Journal of Food Microbiology, 338, 109018

  • Jansen-Alves, C., Fernandes, K. F., Crizel-Cardozo, M. M., Krumreich, F. D., Borges, C. D., & Zambiazi, R. C. (2018). Microencapsulation of propolis in protein matrix using spray drying for application in food systems. Food and Bioprocess Technology, 11, 1422–1436

    Article  CAS  Google Scholar 

  • Jiménez-Martín, E., Pérez-Palacios, T., Ruiz Carrascal, J., & Rojas, T. A. (2016). Enrichment of chicken nuggets with microencapsulated Omega-3 fish oil: Effect of frozen storage time on oxidative stability and sensory quality. Food and Bioprocess Technology, 9, 285–297

    Article  Google Scholar 

  • Karaaslan, M., Şengün, F., Cansu, Ü., Başyiğit, B., Sağlam, H., & Karaaslan, A. (2021). Gum arabic/maltodextrin microencapsulation confers peroxidation stability and antimicrobial ability to pepper seed oil. Food Chemistry, 337, 127748

  • Karagozlu, M., Ocak, B., Özdestan-Ocak, Ö. (2021). Effect of tannic acid concentration on the physicochemical, thermal, and antioxidant properties of gelatin/gum Arabic–walled microcapsules containing Origanum onites L. essential oil. Food and Bioprocess Technology, 15(1),795–806

  • Kilinc, D., Ocak, B., & Özdestan-Ocak, Ö. (2020). Preparation, characterization and antioxidant properties of gelatin films incorporated with Origanum onites L. essential oil. Journal of Food Measurement and Characterization, 15, 795–806

    Article  Google Scholar 

  • Mahungu, S. M., Diaz-Mercado, S., Li, J., Schwenk, M., Singletary, K., & Faller, J. (1999). Stability of isoflavones during extrusion processing of corn/soy mixture. Journal of Agricultural & Food Chemistry, 47(1), 279–284

    Article  CAS  Google Scholar 

  • Malik, N. S. A., & Bradford, J. M. (2006). Changes in oleuropein levels during differentiation and development of floral buds in ‘Arbequina’ olives. Scientia Horticulturae, 110, 274–278

    Article  CAS  Google Scholar 

  • Miranda, T., Esteban, A., Rojas, S., Montero, I., & Ruiz, A. (2008). Combustion analysis of different olive residues. International Journal of Molecular Sciences, 9(4), 512–525

    Article  CAS  Google Scholar 

  • Mkaouar, S., Krichen, F., Bahloul, N., Allaf, K., & Kechaou, N. (2018). Enhancement of bioactive compounds and antioxidant activities of olive (Olea europaea L.) leaf extract by instant controlled pressure drop. Food and Bioprocess Technology, 11, 1222–1229.

    Article  CAS  Google Scholar 

  • Li, M., Zhang, F., Liu, Z., Guo, X., Wu, Q., & Qiao, L. (2018). Controlled release system by active gelatin film incorporated with β-cyclodextrin-thymol inclusion complexes. Food and Bioprocess Technology, 11, 1695–1702

    Article  CAS  Google Scholar 

  • Ocak, B. (2020). Gum arabic and collagen hydrolysate extracted from hide fleshing wastes as novel wall materials for microencapsulation of Origanum onites L. essential oil through complex coacervation. Environmental Science and Pollution Research, 27, 42727–42737

    Article  CAS  Google Scholar 

  • Ötleş, S., Özdestan-Ocak, Ö., Nakilcioğlu, E., & Kartal, C. (2014). Food Chemistry Laboratory Experiments (p. 90p). Ege University Press Office

    Google Scholar 

  • Panagou, E. Z., Tassou, C. C., & Katsaboxakis, K. Z. (2002). Microbiological, physicochemical and organoleptic changes in drysalted olives of Thassos variety stored under different modified atmospheres at 4 and 20℃. International Journal of Food Science and Technology, 37, 635–641

    Article  CAS  Google Scholar 

  • Panagou, E. Z., Schillinger, U., Franz, C. M. A. P., & Nychas, E. G. C. (2008). Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria. Food Microbiology, 25(2), 348–358

  • Prisco, A. D., Valenberg, H. J. F. V., Fogliano, V., & Mauriello, G. (2017). Microencapsulated starter culture during yoghurt manufacturing, effect on technological features. Food and Bioprocess Technology, 10, 1767–1777

    Article  Google Scholar 

  • Ramos, M., Beltran, A., Peltzer, M., Valente, A. J. M., & Garrigos, M. J. (2014). Release and antioxidant activity of carvacrol and thymol from polypropylene active packaging films. LWT-Food Science and Technology, 58, 470–477

    Article  CAS  Google Scholar 

  • Rocha-Selmi, G. A., Favaro-Trindade, C. S., & Grosso, C. R. F. (2013). Morphology, stability and application of lycopene microcapsules produced by complex coacervation. Journal of Chemistry, 1–7

  • Romero, C., García, P., Brenes, M., García, A., & Garrido, A. (2002). Phenolic compounds in natural black Spanish olive varieties. European Food Research and Technology, 215, 489–496

    Article  CAS  Google Scholar 

  • Rutz, J. K., Borges, C. G., Zambiazi, R. C., Crizel-Cardozo, M. M., Kuck, L. S., & Norena, C. P. Z. (2017). Microencapsulation of palm oil by complex coacervation for application in food systems. Food Chemistry, 220, 59–66

    Article  CAS  Google Scholar 

  • da Silva Soares, B., de Carvalho, C. W. P., & Garcia-Rojas, E. E. (2021). Microencapsulation of sacha inchi oil by complex coacervates using ovalbumin-tannic acid and pectin as wall materials. Food and Bioprocess Technology, 14, 817–830

    Article  Google Scholar 

  • Schwartz, M., Quitral, V., Daccarett, C., & Callejas, J. (2009). Development of spreadable olive paste from the Sevillana variety. Grasas Y Aceites, 60(5), 451–457

    CAS  Google Scholar 

  • Soliman, E. A., El-Moghazy, A. Y., Mohy El-Din, M. S., & Massoud, M. A. (2013). Microencapsulation of essential oils within alginate: Formulation and in vitro evaluation of antifungal activity. Journal of Encapsulation and Adsorption Science, 3, 48–55

    Article  Google Scholar 

  • Stoll, L., Costa, T. M. H., Jablonski, A., Flôres, S. H., & Rios, A. O. (2016). Microencapsulation of anthocyanins with different wall materials and its application in active biodegradable films. Food and Bioprocess Technology, 9, 172–181

    Article  CAS  Google Scholar 

  • Talhaoui, N., Taamalli, A., Gómez-Caravaca, A. M., Fernández-Gutiérrez, A., & Segura-Carretero, A. (2015). Phenolic compounds in olive leaves: Analytical determination, biotic and abiotic influence, and health benefits. Food Research International, 77, 92–108

    Article  CAS  Google Scholar 

  • Teodoro, R. A. R., Fernandes, R. V. B., Botrel, D. A., Borges, S. V., & Souza, A. U. (2014). Characterization of microencapsulated rosemary essential oil and its antimicrobial effect on fresh dough. Food and Bioprocess Technology, 7, 2560–2569

    CAS  Google Scholar 

  • Wan, J., Pei, Y., Hu, Y., Ai, T., Sheng, F., Li, J., & Li, B. (2020). Microencapsulation of eugenol through gelatin-based emulgel for preservation of refrigerated meat. Food and Bioprocess Technology, 13, 1621–1632

    Article  CAS  Google Scholar 

  • Xu, B. J., & Chang, S. K. C. (2007). A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. Journal of Food Science, 72, 159–166

    Article  Google Scholar 

Download references

Funding

We received financial support from Ege University Scientific Research Council (project number FYL-2018–20445).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özgül Özdestan-Ocak.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Göktepe, S., Ocak, B. & Özdestan-Ocak, Ö. Physico-chemical, Sensory, and Antioxidant Characteristics of Olive Paste Enriched with Microencapsulated Thyme Essential Oil. Food Bioprocess Technol 14, 2032–2045 (2021). https://doi.org/10.1007/s11947-021-02707-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-021-02707-x

Keywords

Navigation