Skip to main content

Orange Juice Processing and Quality

  • Living reference work entry
  • First Online:
Natural Products in Beverages

Abstract

Oranges (Citrus sinensis L.) are the most popular citrus fruit, and highly consumed worldwide. Their attractive color, high bioactive compounds (ascorbic acid, phenolic compounds, carotenoid compounds, etc.) content, and distinct flavor are the main reasons of its high preference. However, these reasons that cause high consumption of orange juice change during processing. Some additional quality properties such as acidity, hydroxymethylfurfural content, browning index, and viscosity also can be affected by processing conditions. The processing of oranges to produce juice or concentrate contains many steps with different details and processing variables. It is also possible to obtain orange juices with different properties (pulpy, clarified, not from concentrate, etc.) by applying different processing steps. Still, to generalize, the orange juice processing steps are prewashing, sorting, washing, extraction, finishing, separation, pasteurization, concentration/evaporation, cooling, and filling. The sources of changes in orange juice quality in these steps are basically oxygen contact, effect of heat, and chemical reactions associated with/accelerated by them. Some quality parameters of final product can be adjustable by modifying the processing conditions or changing the method with an innovative one. Also, the selected orange variety used for juice production has a significant impact on the quality of final product. The knowledge about the orange juice processing steps, the effects of these steps on quality of product, and recent findings in orange juice processing are presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CP:

Conventional thermal pasteurization

FCJ:

Single strength from concentrate

FDA:

Food and Drug Administration

GRAS:

Generally recognized as safe

HMF:

Hydroxymethylfurfural

HPP:

High pressure processing

MVR:

Mechanical vapor recompression

MWH:

Microwave heating

NFC:

Not from concentrate

OAC:

Ohmic atmospheric concentration

OD:

Osmotic distillation

OVC:

Ohmic vacuum concentration

PEF:

Pulsed electric fields

PME:

Pectinmethylesterase

RCS:

Reactive carbonyl species

RFC:

Reconstituted from concentrate

RO:

Reverse osmosis

TASTE:

Thermally accelerated short-time evaporator

TSS:

Total soluble solids

UF:

Ultrafiltration

UV:

Ultraviolet light treatment

References

  1. Sandhu KS, Minhas KS (2006) Oranges and citrus juices. In: Hui YH (ed) Handbook of fruits and fruit processing. Blackwell Publishing, USA

    Google Scholar 

  2. Balta M, Dundar Kirit B, Ağçam E, Akyildiz A (2023) Determination of the effect of different atmospheric conditions on bioactive components of various citrus juices. J Food Compos Anal 115:105006

    Article  CAS  Google Scholar 

  3. Anonymous (2022) The Orange book: a unique guide to orange juice production by Tetra Pak Technology, Engineering, Agriculture 198 p (2017). https://orangebook.tetrapak.com/chapter/fruit-processing#toc-5-7-concentrate-production. ISBN 9789177730583, Accessed 26 Dec 2022

  4. Perez-Cacho PR, Rouseff R (2008) Processing and storage effects on orange juice aroma: a review. J Agric Food Chem 56(21):9785–9796

    Article  PubMed  Google Scholar 

  5. Dundar Kirit B, Akyıldız A (2022) Rheological properties of thermally or non-thermally treated juice/nectar/puree: a review. J Food Process Preserv 46(11):e17075

    Article  CAS  Google Scholar 

  6. Aktağ IG, Gökmen V (2021) Investigations on the formation of α-dicarbonyl compounds and 5-hydroxymethylfurfural in apple juice, orange juice and peach puree under industrial processing conditions. Eur Food Res Technol 247(4):797–805

    Article  Google Scholar 

  7. Anonymous (2022) FAOSTAT. https://www.fao.org/faostat/en/#data/. Accessed 30 Nov 2022

  8. Ortuño C, Balaban M, Benedito J (2014) Modelling of the inactivation kinetics of Escherichia coli, Saccharomyces cerevisiae and pectin methylesterase in orange juice treated with ultrasonic-assisted supercritical carbon dioxide. J Supercrit Fluids 90:18–26

    Article  Google Scholar 

  9. Liu YQ, Heying E, Tanumihardjo SA (2012) History, global distribution, and nutritional importance of citrus fruits. Compr Rev Food Sci Food Safety 11:530–545

    Article  CAS  Google Scholar 

  10. Honaiser TC, Arcari SG, Fabiane KC, de Moura Rocha M, Fedrigo IMT, Arisi ACM (2022) Synergism and phenolic bioaccessibility during in vitro co-digestion of cooked cowpea with orange juice. Int J Food Sci Tech. https://doi.org/10.1111/ijfs.16144

  11. Al Juhaimi F, Özcan MM, Uslu N, Ghafoor K (2018) The effect of drying temperatures on antioxidant activity, phenolic compounds, fatty acid composition and tocopherol contents in citrus seed and oils. J Food Sci Tech 55(1):190–197

    Article  Google Scholar 

  12. Lado J, Gambetta G, Zacarias L (2018) Key determinants of citrus fruit quality: metabolites and main changes during maturation. Sci Hortic 233:238–248

    Article  CAS  Google Scholar 

  13. over E, Gmitter FG, Grosser J, Baldwin E, Wu GA, Bai J, Motamayor JC (2020) Rationale for reconsidering current regulations restricting use of hybrids in orange juice. Hort Res 7:38–45

    Google Scholar 

  14. Wallrauch S (1980) Composition of Brazilian orange juices and effects of harvesting date. Beitrag ueber die Zusammensetzung brasilianischer Orangensaefte und deren Abhaengigkeit vom Erntetermin der Fruechte. Fluessiges Obst 47(7):306–311

    CAS  Google Scholar 

  15. Gupta AK, Pathak U, Tongbram T, Medhi M, Terdwongworakul A, Magwaza LS, Mishra P (2022) Emerging approaches to determine maturity of citrus fruit. Crit Rev Food Sci Nutr 62(19):5245–5266

    Article  PubMed  Google Scholar 

  16. Li P, Lee SH, Hsu HY (2011) Review on fruit harvesting method for potential use of automatic fruit harvesting systems. Procedia Eng 23:351–366

    Article  CAS  Google Scholar 

  17. Sanders KF (2005) Orange harvesting systems review. Biosyst Eng 90(2):115–125

    Article  Google Scholar 

  18. Ozdemir AE, Dundar O (2006) The effects of fungicide and hot water treatments on the internal quality parameters of Valencia oranges. Asian J Plant Sci 5(1):142–146

    Google Scholar 

  19. Pao S, Davis CL, Kelsey DF (2000) Efficacy of alkaline washing for the decontamination of orange fruit surfaces inoculated with Escherichia coli. J Food Protect 63(7):961–964

    Article  CAS  Google Scholar 

  20. Huang K, Wrenn S, Tikekar R, Nitin N (2018) Efficacy of decontamination and a reduced risk of cross-contamination during ultrasound-assisted washing of fresh produce. J Food Eng 224:95–104

    Article  CAS  Google Scholar 

  21. Acoglu B, Omeroglu PY (2021) Effectiveness of different type of washing agents on reduction of pesticide residues in orange (Citrus sinensis). LWT 147:111690

    Article  CAS  Google Scholar 

  22. Banach JL, Sampers I, Van Haute S, Van der Fels-Klerx HJ (2015) Effect of disinfectants on preventing the cross-contamination of pathogens in fresh produce washing water. Int J Environ Res Pub Health 12(8):8658–8677

    Article  CAS  Google Scholar 

  23. Jhawar J (2016) Orange sorting by applying pattern recognition on colour image. Proced Comp Sci 78:691–697

    Article  Google Scholar 

  24. Topuz A, Topakci M, Canakci M, Akinci I, Ozdemir F (2005) Physical and nutritional properties of four orange varieties. J Food Eng 66:519–523

    Article  Google Scholar 

  25. Cypriano DZ, da Silva LL, Tasic L (2018) High value-added products from the orange juice industry waste. Waste Manag 79:71–78

    Article  CAS  PubMed  Google Scholar 

  26. Saberian H, Hamidi-Esfahani Z, Gavlighi HA, Barzegar M (2017) Optimization of pectin extraction from orange juice waste assisted by ohmic heating. Chem Eng Process: Proc Int 117:154–161

    Article  CAS  Google Scholar 

  27. Shan Y (2016) Extraction processes of functional components from citrus Peel comprehensive utilizastion of citrus by-products. Academic Press, London, UK

    Google Scholar 

  28. Koncz D, Tóth B, Bahar MA, Roza O, Csupor D (2022) The safety and efficacy of Citrus aurantium (bitter Orange) extracts and p-Synephrine: a systematic review and meta-analysis. Nutrients 14(19):4019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wicker L, Temelli F (1988) Heat inactivation of Pectinesterase in Orange juice pulp. J Food Sci 53(1):162–164. https://doi.org/10.1111/j.1365-2621.1988.tb10199.x

    Article  CAS  Google Scholar 

  30. De Sio F, Palmieri A, Servillo L, Giovane A, Castaldo D (2001) Thermoresistance of pectin methylesterase in Sanguinello orange juice. J Food Biochem 25(2):105–115

    Article  Google Scholar 

  31. Villamiel M, del Castillo MD, San Martin C, Corzo N (1998) Assessment of the thermal treatment of orange juice during continuous microwave and conventional heating. J Sci Food Agr 78(2):196–200. https://doi.org/10.1002/(Sici)1097-0010(199810)78:2<196::Aid-Jsfa103>3.0.Co;2-Z

    Article  CAS  Google Scholar 

  32. Martins CPC, Cavalcanti RN, Cardozo TSF et al (2021) Effects of microwave heating on the chemical composition and bioactivity of orange juice-milk beverages. Food Chem 345:128746. https://doi.org/10.1016/j.foodchem.2020.128746

    Article  CAS  PubMed  Google Scholar 

  33. Achir N, Dhuique-Mayer C, Hadjal T, Madani K, Pain J-P, Dornier M (2016) Pasteurization of citrus juices with ohmic heating to preserve the carotenoid profile. Innov Food Sci Emerg 33:397–404. https://doi.org/10.1016/j.ifset.2015.11.002

    Article  CAS  Google Scholar 

  34. Agcam E, Akyildiz A, Evrendilek GA (2014b) Effects of PEF and heat pasteurization on PME activity in orange juice with regard to a new inactivation kinetic model. Food Chem 165:70–76. https://doi.org/10.1016/j.foodchem.2014.05.097

    Article  CAS  PubMed  Google Scholar 

  35. Agcam E, Akyildiz A, Akdemir Evrendilek G (2014a) Comparison of phenolic compounds of orange juice processed by pulsed electric fields (PEF) and conventional thermal pasteurisation. Food Chem 143:354–361. https://doi.org/10.1016/j.foodchem.2013.07.115

    Article  CAS  PubMed  Google Scholar 

  36. Agcam E, Akyildiz A, Akdemir Evrendilek G (2016) A comparative assessment of long-term storage stability and quality attributes of orange juice in response to pulsed electric fields and heat treatments. Food Bioprod Process 99:90–98. https://doi.org/10.1016/j.fbp.2016.04.006

    Article  CAS  Google Scholar 

  37. Etzbach L, Stolle R, Anheuser K, Herdegen V, Schieber A, Weber F (2020) Impact of different pasteurization techniques and subsequent Ultrasonication on the in vitro bioaccessibility of carotenoids in Valencia Orange (Citrus sinensis (L.) Osbeck) juice. Antioxidants (Basel) 9(6). https://doi.org/10.3390/antiox9060534

  38. Schuina GL, Moraes VP, Silva PI, Carvalho RV (2021) Effect of thermosonication on pectin methylesterase activity and quality characteristics of orange juice. Rev Ciênc Agron 52(4). https://doi.org/10.5935/1806-6690.20210055

  39. Vervoort L, Van der Plancken I, Grauwet T et al (2011) Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice. Innov Food Sci Emerg 12(4):466–477. https://doi.org/10.1016/j.ifset.2011.06.003

    Article  CAS  Google Scholar 

  40. Nienaber U, Shellhammer TH (2001) High-pressure processing of orange juice: kinetics of pectinmethylesterase inactivation. J Food Sci 66(2):328–331

    Article  CAS  Google Scholar 

  41. Vieira FN, Lourenco S, Fidalgo LG et al (2018) Long-term effect on bioactive components and antioxidant activity of thermal and high-pressure pasteurization of Orange juice. Molecules 23(10). https://doi.org/10.3390/molecules23102706

  42. Tran MTT, Farid M (2004) Ultraviolet treatment of orange juice. Innov Food Sci Emerg 5(4):495–502. https://doi.org/10.1016/j.ifset.2004.08.002

    Article  CAS  Google Scholar 

  43. Prado DBD, Szczerepa M, Capeloto OA et al (2019) Effect of ultraviolet (UV-C) radiation on spores and biofilms of Alicyclobacillus spp. in industrialized orange juice. Int J Food Microbiol 305:108238. https://doi.org/10.1016/j.ijfoodmicro.2019.108238

    Article  CAS  PubMed  Google Scholar 

  44. Sun R, Xing R, Zhang J et al (2022) Authentication and quality evaluation of not from concentrate and from concentrate orange juice by HS-SPME-GC-MS coupled with chemometrics. LWT 162. https://doi.org/10.1016/j.lwt.2022.113504

  45. Berk Z (2016) Production of single-strength citrus juices. In: Citrus fruit processing, pp 127–185

    Google Scholar 

  46. Akyildiz A, Mertoglu TS, Agcam E (2021) Kinetic study for ascorbic acid degradation, hydroxymethylfurfural and furfural formations in Orange juice. J Food Compos Anal 102. https://doi.org/10.1016/j.jfca.2021.103996

  47. Berk Z (2013) Food process engineering and technology, 2nd edn. Academic Press, London, UK

    Google Scholar 

  48. Ibarz A, Barbosa-Cánovas GV (2002) Unit operations in food engineering, 1st edn. CRC Press, Boca Raton

    Book  Google Scholar 

  49. Berk (2016) Production of citrus juice concentrates. In: Berk Z (ed) Citrus fruit processing, Academic Press, London, UK, pp 187–217

    Google Scholar 

  50. Anonymous (2022) TASTE Evaporator. https://www.jbtc.com/foodtech/products-and-solutions/products/evaporators-and-concentrators/taste-evaporator/. Accessed 26 Dec 2022

  51. Zimmer E, Latz M (2016) Energetically optimized concentration of fruit juices. Fruits. September/October: 179–183

    Google Scholar 

  52. Mastello RB, Janzantti NS, Monteiro M (2015) Volatile and odoriferous compounds changes during frozen concentrated orange juice processing. Food Res Int 77(3):591–598

    Article  CAS  Google Scholar 

  53. Quist-Jensen CA, Macedonio F, Conidi C, Cassano A, Aljlil S, Alharbi OA, Drioli E (2016) Direct contact membrane distillation for the concentration of clarified orange juice. J Food Eng 187:37–43

    Article  CAS  Google Scholar 

  54. Orellana-Palma P, Petzold G, Andana I, Torres N, Cuevas C (2017) Retention of ascorbic acid and solid concentration via centrifugal freeze concentration of orange juice. J Food Qual 5214909:7

    Google Scholar 

  55. Sánchez J, Ruiz Y, Raventós M, Auleda JM, Hernández E (2010) Progressive freeze concentration of orange juice in a pilot plant falling film. Innov Food Sci Emerg Technol 11(4):644–651

    Article  Google Scholar 

  56. Haas ICS, Espindola JS, Liz GR, Luna AS, Bordignon-Luiz MT, Prudêncio ES, Gois JS, Fedrigo IMT (2022) Gravitational assisted three-stage block freeze concentration process for producing enriched concentrated orange juice (Citrus sinensis L.): multi-elemental profiling and polyphenolic bioactives. J Food Eng 315:110802

    Article  CAS  Google Scholar 

  57. Jesus DF, Leite MF, Silva LFM, Modesta RD, Matta VM, Cabral LMC (2007) Orange (Citrus sinensis) juice concentration by reverse osmosis. J Food Eng 81(2):287–291

    Article  CAS  Google Scholar 

  58. Kumar D, Ladaniya MS, Gurjar M, Kumar S (2022) Positive retention of bioactive compounds and biochemical components of Sathgudi sweet orange (Citrus sinensis L. Osbeck) juice concentrate by integrated membrane process. J Food Meas Charact 16:4161–4170

    Article  Google Scholar 

  59. Polidori J, Dhuique-Mayer C, Dornier M (2018) Crossflow microfiltration coupled with diafiltration to concentrate and purify carotenoids and flavonoids from citrus juices. Innov Food Sci Emerg Technol 45:320–329

    Article  CAS  Google Scholar 

  60. Hwang JH, Jung AH, Park SH (2022) Efficacy of ohmic vacuum concentration for orange juice concentrates and their physicochemical properties under different voltage gradients. LWT 154:112750

    Article  CAS  Google Scholar 

  61. Bozkir H, Tekgül Y (2022) Production of orange juice concentrate using conventional and microwave vacuum evaporation: thermal degradation kinetics of bioactive compounds and color values. J Food Process Preserv 46(6):15902

    Article  Google Scholar 

  62. Vieira SM, Silva TM, Glória MBA (2010) Influence of processing on the levels of amines and proline and on the physico-chemical characteristics of concentrated orange juice. Food Chem 119(1):7–11

    Article  CAS  Google Scholar 

  63. Gama JJT, Sylos CM (2007) Effect of thermal pasteurization and concentration on carotenoid composition of Brazilian Valencia orange juice. Food Chem 100(4):1686–1690

    Article  CAS  Google Scholar 

  64. Adnan A, Mushtaq M, Islam T (2018) Chapter 12 - fruit juice concentrates. In: Rajauria G, Tiwari BK (eds) Fruit juices extraction, composition, quality and analysis. Academic Press, USA, pp 217–240

    Google Scholar 

  65. Prado DBD, Szczerepa MMA, Capeloto OA, Astrath NGC, dos Santos NCA, Previdelli ITS, Nakamura CV, Mikcha JMG, Filho BAA (2019) Effect of ultraviolet (UV-C) radiation on spores and biofilms of Alicyclobacillus spp. in industrialized orange juice. Int J Food Microbiol 305:108238

    Article  PubMed  Google Scholar 

  66. Burdurlu HS, Koca N, Karadeniz F (2006) Degradation of vitamin C in citrus juice concentrates during storage. J Food Eng 74(2):211–216

    Article  CAS  Google Scholar 

  67. Paravisini L, Peterson DG (2019) Mechanisms non-enzymatic browning in orange juice during storage. Food Chem 289:320–327

    Article  CAS  PubMed  Google Scholar 

  68. Sohn M, Ho C-T (1995) Ammonia generation during thermal degradation of amino acids. J Agric Food Chem 43(12):3001–3003

    Article  CAS  Google Scholar 

  69. Jungen M, Schütz B, Schweiggert R (2020) Influence of species and processing techniques on phlorin in citrus juices as quantified by 1H-NMR spectroscopy. LWT 134:109949

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asiye Akyıldız .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Akyıldız, A., Dundar Kirit, B., Ağçam, E. (2023). Orange Juice Processing and Quality. In: Mérillon, JM., Riviere, C., Lefèvre, G. (eds) Natural Products in Beverages. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-04195-2_110-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04195-2_110-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04195-2

  • Online ISBN: 978-3-031-04195-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics