Skip to main content
Log in

Development of active films based on modified starches incorporating the antimicrobial agent lauroyl arginate (LAE) for the food industry

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Nonionic (NS), cationic (CS), and anionic (ASs and AShc) starch-based films were developed using the casting method, activated with the cationic surfactant LAE, aiming to provide an alternative to extend the shelf life of food products. Among the characterization results of the films, the addition of LAE made the packaging active, inhibiting the development of the gram-positive bacteria Staphylococcus aureus (more sensitive), the gram-negative Escherichia coli, and the fungus Penicillium sp. In most films, the addition promoted an increase in thickness and, in all films, an increase in flexibility and a decrease in stiffness, acting as a plasticizer or in synergy with glycerol. However, the addition decreased (p < 0.05) the clarity and increased the opacity of the films based on NS and CS. The results demonstrated that the four starches generated films with different characteristics that can be applied in different food products and that the incorporation of LAE tends to prolong the shelf life of the packaged products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asker, D., Weiss, J., & McClements, D. J. (2009). Analysis of the interactions of a cationic surfactant (Lauric arginate) with an anionic biopolymer (pectin): Isothermal titration calorimetry, light scattering, and microelectrophoresis. Langmuir. https://doi.org/10.1021/la803038w.

  • ASTM – American Society for testing and Materials – D 882. (2012). Annual book of ASTM standards. Philadelphia: ASTM.

    Google Scholar 

  • ASTM – American Society for testing and Materials - D 1746. (2015). Annual book of ASTM standards. Philadelphia: ASTM.

    Google Scholar 

  • Babu, A. S., Naik, G. N. M., James, J., Aboobacker, A. B., Eldhose, A., & Mohan, R. J. (2018). A comparative study on dual modification of banana (Musa paradisiaca) starch by microwave irradiation and cross-linking. Journal of Food Measurement and Characterization, 12(3), 2209–2217. https://doi.org/10.1007/s11694-018-9837-x.

    Article  Google Scholar 

  • Basiak, E., Lenart, A., & Debeaufort, F. (2018). How glycerol and water contents affect the structural and functional properties of starch-based edible films. Polymers, 10(4). https://doi.org/10.3390/polym10040412.

  • Bersaneti, G. T., Garcia, S., Mali, S., & Celligoi, M. A. P. C. (2019). Evaluation of the prebiotic activities of edible starch films with the addition of nystose from Bacillus subtilis natto. LWT, 116, 108502. https://doi.org/10.1016/j.lwt.2019.108502.

    Article  CAS  Google Scholar 

  • Biduski, B., Evangelho, J. A. D., Silva, F. T. D., El Halal, S. L. M., Takimi, A. S., Carreño, N. L. V., et al. (2017). Physicochemical properties of nanocomposite films made from sorghum-oxidized starch and nanoclay. Starch/Staerke, 69, 11–12.

    Article  Google Scholar 

  • Chang, S.-Y., & Lai, H.-M. (2016). Effect of trisodium citrate on swelling property and structure of cationic starch thin film. Food Hydrocolloids, 56, 254–265. https://doi.org/10.1016/j.foodhyd.2015.12.029.

    Article  CAS  Google Scholar 

  • Domene-López, D., García-Quesada, J. C., Martin-Gullon, I., & Montálban, M. G. (2019). Influence of starch composition and molecular weight on physicochemical properties of biodegradable films. Polymers, 11(7). https://doi.org/10.3390/polym11071084.

  • El Halal, S. L. M., Colussi, R., Deon, V. G., Pinto, V. Z., Villanova, F. A., Carreño, N. L. V., et al. (2015). Films based on oxidized starch and cellulose from barley. Carbohydrate Polymers, 133, 644–653. https://doi.org/10.1016/j.carbpol.2015.07.024.

    Article  CAS  PubMed  Google Scholar 

  • Elsabee, M. Z., & Abdou, E. S. (2013). Chitosan based edible films and coatings: a review. Materials Science and Engineering: C, 33(4), 1819–1841. https://doi.org/10.1016/j.msec.2013.01.010.

    Article  CAS  Google Scholar 

  • Fonseca, L. M., Henkes, A. K., Bruni, G. P., Viana, L. A. N., Moura, C. M., Flores, W. H., & Galio, A. F. (2018). Fabrication and characterization of native and oxidized potato starch biodegradable films. Food Biophysics, 13(2), 163–174. https://doi.org/10.1007/s11483-018-9522-y.

    Article  Google Scholar 

  • Gaikwad, K. K., Lee, S. M., Lee, J. S., & Lee, Y. S. (2017). Development of antimicrobial polyolefin films containing lauroyl arginate and their use in the packaging of strawberries. Journal of Food Measurement and Characterization, 11(4), 1706–1716. https://doi.org/10.1007/s11694-017-9551-0.

    Article  Google Scholar 

  • Gamarra-Montes, A., Missagia, B., Morató, J., & Muñoz-Guerra, S. (2018). Antibacterial films made of ionic complexes of poly (ɣ-glutamic acid) and ethyl lauroyl arginate. Polymers, 10, 21.

    Article  Google Scholar 

  • Garcia-Hernandez, A., Vernon-Carter, E. J., & Alvarez-Ramirez. (2017). Impact of ghosts on the mechanical, optical and barrier properties of corn starch films. Starch, 69(1-2). https://doi.org/10.1002/star.201600308.

  • Gonçalves, S. M., dos Santos, D. C., Motta, J. F. G., Santos, R. R., Chávez, D. W. H., & Melo, N. R. (2019). Structure and functional properties of cellulose acetate films incorporated with glycerol. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2019.01.031.

  • Guimarães, M., Botaro, V. R., Novack, K. M., Teixeira, F. G., & Tonoli, G. H. D. (2015). High moisture strength of cassava starch/polyvinyl alcohol-compatible blends for the packaging and agricultural sectors. Journal of Polymer Research, 22(10). https://doi.org/10.1007/s10965-015-0834-z.

  • Guo, M., Jin, T. Z., & Yang, R. (2014). Antimicrobial polylactic acid packaging films against Listeria and Salmonella in culture medium and on ready-to-eat-meat. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-014-1322-x.

  • Haghighi, H., De Leo, R., Bedin, E., Pfeifer, F., Siesler, H. W., & Pulvirenti, A. (2019). Comparative analysis of blend and bilayer films based on chitosan and gelatin enriched with LAE (lauroyl arginate ethyl) with antimicrobial activity for food packaging applications. Food Packaging and Shelf Life, 19, 31–39. https://doi.org/10.1016/j.fpsl.2018.11.015.

    Article  Google Scholar 

  • Haghighi, H., Leugoue, S. K., Pfeifer, F., Siesler, H. W., Licciardello, F., Fava, P., & Pulvirenti, A. (2020). Development of antimicrobial films based on chitosan-polyvinyl alcohol blend enriched with ethyl lauroyl arginate (LAE) for food packaging applications. Food Hydrocolloids, 100, 105419. https://doi.org/10.1016/j.foodhyd.2019.105419.

    Article  CAS  Google Scholar 

  • Imran, M., Shaik, A. H., Ansari, A. R., Aziz, A., Hussain, S., Abouatiaa, A. F. F., et al. (2018). Synthesis of highly stable γ-Fe 2 O 3 ferrofluid dispersed in liquid paraffin, motor oil and sunflower oil for heat transfer applications. RSC Advances, 8(25), 13970–13975. https://doi.org/10.1039/C7RA13467C.

    Article  CAS  Google Scholar 

  • Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012). Edible and biodegradable starch films: a review. Food and Bioprocess Technology, 5(6), 2058–2076. https://doi.org/10.1007/s11947-012-0835-4.

    Article  CAS  Google Scholar 

  • Kavoosi, G., Dadfar, S. M. M., & Purfard, A. M. (2013). Mechanical, physical, antioxidant, and antimicrobial properties of gelatin films incorporated with thymol for potential use as nano wound dressing. Journal of Food Science, 78(2), E244–E250. https://doi.org/10.1111/1750-3841.12015.

    Article  CAS  PubMed  Google Scholar 

  • Kuakpetoon, D., & Wang, Y. (2001). Characterization of different starches oxidized by hypochlorite. Starch-Stärke. https://doi.org/10.1002/1521-379X(200105)53:5<211::AID-STAR211>3.0.CO;2-M.

  • La Fuente, C. I. A., Souza, A. T., Tadini, C. C., & Augusto, P. E. D. (2019). Ozonation of cassava starch to produce biodegradable films. International Journal of Biological Macromolecules, 141, 713–720. https://doi.org/10.1016/j.ijbiomac.2019.09.028.

    Article  CAS  PubMed  Google Scholar 

  • Lawal, O. S., Adebowale, K. O., Ogunsanwo, B. M., Barba, L. L., & Ilo, N. S. (2005). Oxidized and acid thinned starch derivatives of hybrid maize: functional characteristics, wide-angle X-ray diffractometry and thermal properties. International Journal of Biological Macromolecules, 35(1-2), 71–79. https://doi.org/10.1016/j.ijbiomac.2004.12.004.

    Article  CAS  PubMed  Google Scholar 

  • Loeffler, M., McClements, D. J., McLandsborough, L., Terjung, N., Chang, Y., & Weiss, J. (2014). Electrostatic interactions of cationic lauric arginate with anionic polysaccharides affect antimicrobial activity against spoilage yeasts. Journal of Applied Microbiology. https://doi.org/10.1111/jam.12502.

  • Lourdin, D., Putaux, J.-L., Potocki-Véronèse, G., Chevigny, C., Rolland-Sabaté, A., & Buléon, A. (2015). Crystalline structure in starch. In Y. Nakamura (Ed.), Starch (pp. 61–90). Japan: Springer.

    Chapter  Google Scholar 

  • Ma, Q., Davidson, P. M., & Zhong, Q. (2020). Properties and potential food applications of lauric arginate as a cationic antimicrobial. International Journal of Food Microbiology, 315, 108417. https://doi.org/10.1016/j.ijfoodmicro.2019.108417.

    Article  CAS  PubMed  Google Scholar 

  • Ma, Q., Zhang, Y., & Zhong, Q. (2016). Physical and antimicrobial properties of chitosan films incorporated with lauric arginate, cinnamon oil, and ethylenediaminetetraacetate. LWT, 65, 173–179. https://doi.org/10.1016/j.lwt.2015.08.012.

    Article  CAS  Google Scholar 

  • Mallakpour, S., & Ezhieh, A. N. (2017). Effect of Starch-MWCNT@ Valine nanocomposite on the optical, morphological, thermal, and adsorption properties of chitosan. Journal of Polymers and the Environment, 25(3), 875–883. https://doi.org/10.1007/s10924-016-0874-4.

    Article  CAS  Google Scholar 

  • Mlalila, N., Hilonga, A., Swai, H., Devlieghere, F., & Ragaert, P. (2018). Antimicrobial packaging based on starch, poly(3-hydroxybutyrate) and poly(lactic-co-glycolide) materials and application challenges. Trends in Food Science & Technology, 74, 1–11. https://doi.org/10.1016/j.tifs.2018.01.015.

    Article  CAS  Google Scholar 

  • Molina-Besch, K., Wikström, F., & Williams, H. (2019). The environmental impact of packaging in food supply chains—does life cycle assessment of food provide the full picture? The International Journal of Life Cycle Assessment, 24(1), 37–50. https://doi.org/10.1007/s11367-018-1500-6.

    Article  Google Scholar 

  • Moreno, O., Díaz, R., Atarés, L., & Chiralt, A. (2016). Influence of the processing method and antimicrobial agents on properties of starch-gelatin biodegradable films. Polymer International, 65(8), 905–914. https://doi.org/10.1002/pi.5115.

    Article  CAS  Google Scholar 

  • Moreno, O., Cárdenas, J., Atarés, L., & Chiralt, A. (2017). Influence of starch oxidation on the functionally of starch-gelatin based active films. Carbohydrate Polymers, 178, 147–158. https://doi.org/10.1016/j.carbpol.2017.08.128.

    Article  CAS  PubMed  Google Scholar 

  • Muriel-Galet, V., López-Carballo, G., Hernández-Muñoz, P., & Gavara, R. (2014). Characterization of ethylene-vinyl alcohol copolymer containing lauril arginate (LAE) as material for active antimicrobial food packaging. Food Packaging and Shelf Life, 1(1), 10–18. https://doi.org/10.1016/j.fpsl.2013.09.002.

    Article  Google Scholar 

  • Muriel-Galet, V., López-Carballo, G., Gavara, R., & Hernández-Muñoz, P. (2015). Antimicrobial effectiveness of lauroyl arginate incorporated into ethlylene vinyl alcohol copolymers to extend the shelf life of chicken stock and surimi sticks. Food and Bioprocess Technology, 8(1), 208–217. https://doi.org/10.1007/s11947-014-1391-x.

    Article  CAS  Google Scholar 

  • Nakashima, A. Y., Chevalier, R. C., & Cortez-Vega, W. R. (2016). Development and characterization of collagen films with added essential oil of clove india. Journal of Bioenergy and Food Science. https://doi.org/10.18067/jbfs.v3i1.86.

  • Ochoa, T. A., Almendárez, B. E. G., Reyes, A. A., Pastrana, D. M. R., López, G. F. G., Belloso, O. M., & Regalado-González, C. (2017). Design and characterization of corn starch edible films including beeswax and natural antimicrobials. Food and Bioprocess Technology, 10(1), 103–114. https://doi.org/10.1007/s11947-016-1800-4.

  • Oliveira, T. V., Freitas, P. A. V., Pola, C. C., Silva, J. O. R., Diaz, L. D. A., Ferreira, S. O., & de Soares, N., F. F. (2020). Development and optimization of antimicrobial active films produced with a reinforced and compatibilized biodegradable polymers. Food Packaging and Shelf Life. https://doi.org/10.1016/j.fpsl.2019.100459.

  • Oluwasina, O. O., Olaleye, F. K., Olusegun, S. J., Oluwasina, O. O., & Mohallem, N. D. S. (2019). Influence of oxidized starch on physicomechanical, thermal properties, and atomic force micrographs of cassava starch bioplastic film. International Journal of Biological Macromolecules, 135, 282–293. https://doi.org/10.1016/j.ijbiomac.2019.05.150.

    Article  CAS  PubMed  Google Scholar 

  • Oyeyinka, S. A., Singh, S., Adebola, P. O., Gerrano, A. S., & Amonsou, E. O. (2015). Physicochemical properties of starches with variable amylose contents extracted from bambara groundnut genotypes. Carbohydrate Polymers, 133, 171–178. https://doi.org/10.1016/j.carbpol.2015.06.100.

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulou, E. L., Paul, U. C., Tran, T. N., Suarato, G., Ceseracciu, L., Marras, S., d’Arcy, R., & Athanassiou, A. (2019). Sustainable active food packaging from poly(lactic acid) and cocoa bean shells. ACS Applied Materials & Interfaces, 11(34), 31317–31327. https://doi.org/10.1021/acsami.9b09755.

    Article  CAS  Google Scholar 

  • Priyanka, B., Patil, R. K., & Dwarakanath, S. (2016). A review on detection methods used for foodborne pathogens. The Indian Journal of Medical Research. https://doi.org/10.4103/0971-5916.198677.

  • Raak, N., Symmank, C., Zahn, S., Aschemann-Witzel, J., & Rohm, H. (2017). Processing-and product-related causes for food waste and implications for the food supply chain. Waste Management, 61, 461–472. https://doi.org/10.1016/j.wasman.2016.12.027.

    Article  PubMed  Google Scholar 

  • Radosta, S., Vorwerg, W., Ebert, A., Begli, A. H., Grülc, D., & Wastyn, M. (2004). Properties of low-substituted cationic starch derivatives prepared by different derivatisation processes. Starch-Stärke, 56(7), 277–287. https://doi.org/10.1002/star.200300210.

    Article  CAS  Google Scholar 

  • Ribeiro-Santos, R., Motta, J. F. G., Teodoro, C. E. S., & Melo, N. R. (2017). Antimicrobial effectiveness and color stability of protein-based films incorporated with essential oils. International Food Research Journal, 24(5), 2201–2206.

    CAS  Google Scholar 

  • Rodríguez, M., Oses, J., Ziani, K., & Mate, J. I. (2006). Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Research International, 39(8), 840–846. https://doi.org/10.1016/j.foodres.2006.04.002.

    Article  CAS  Google Scholar 

  • Sadeghizadeh-Yazdi, J., Habibi, M., Kamali, A. A., & Banaei, M. (2019). Application of edible and biodegradable starch-based films in food packaging: a systematic review and meta-analysis. Current Research in Nutrition and Food Science. https://doi.org/10.12944/CRNFSJ.7.3.03.

  • Sanyang, M., Sapuan, S., Jawaid, M., Ishak, M., & Sahari, J. (2015). Effect of plasticizer type and concentration on tensile, thermal and barrier properties of biodegradable films based on sugar palm (Arenga pinnata) starch. Polymers, 7(6), 1106–1124. https://doi.org/10.3390/polym70x000x.

    Article  CAS  Google Scholar 

  • Şen, F., Uzunsoy, İ., Baştürk, E., & Kahraman, M. V. (2017). Antimicrobial agent-free hybrid cationic starch/sodium alginate polyelectrolyte films for food packaging materials. Carbohydrate Polymers, 170, 264–270. https://doi.org/10.1016/j.carbpol.2017.04.079.

    Article  CAS  PubMed  Google Scholar 

  • Silva, O. A., Pellá, M. G., Pellá, M. G., Caetano, J., Simões, M. R., Bittencourt, P. R. S., & Dragunski, D. C. (2019). Synthesis and characterization of a low solubility edible film based on native cassava starch. International Journal of Biological Macromolecules, 128, 290–296. https://doi.org/10.1016/j.ijbiomac.2019.01.132.

    Article  CAS  PubMed  Google Scholar 

  • Thiré, R. M. S. M., Simão, R. A., Araújo, P. J. G., Achete, C. A., & Andrade, C. T. (2004). Redução da hidrofilicidade de filmes biodegradáveis à base de amido por meio de polimerização por plasma. Polímeros: Ciência e Tecnologia, 14(1), 57–62. https://doi.org/10.1590/S0104-14282004000100015.

    Article  Google Scholar 

  • Toro-Márquez, L. A., Merino, D., & Gutiérrez, T. J. (2018). Bionanocomposite films prepared from corn starch with and without nanopackaged Jamaica (Hibiscus sabdariffa) flower extract. Food and Bioprocess Technology, 11(11), 1955–1973. https://doi.org/10.1007/s11947-018-2160-z.

    Article  CAS  Google Scholar 

  • Zamudio-Flores, P. B., Bautista-Baños, S., Salgado-Delgado, R., & Bello-Pérez, L. A. (2009). Effect of oxidation level on the dual modification of banana starch: The mechanical and barrier properties of its films. Journal of Applied Polymer Science, 112(2), 822–829. https://doi.org/10.1002/app.29433.

    Article  CAS  Google Scholar 

  • Zhu, L., Qi, H., Lv, M., Kong, Y., Yu, Y., & Xu, X. (2012). Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies. Bioresource Technology, 124, 455–459. https://doi.org/10.1016/j.biortech.2012.08.059.

    Article  CAS  PubMed  Google Scholar 

  • Zia-ud-Din, Xiong, H., & Fei, P. (2017). Physical and chemical modification of starches: a review. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2015.1087379.

Download references

Acknowledgments

The authors would like to thank the Federal Rural University of Rio de Janeiro (UFRRJ), the Federal Fluminense University (UFF), Embrapa Agroindústria de Alimentos, Laboratory Multi-User of Electron Microscopy (LMME) - UFF (Volta Redonda - RJ), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) – Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Dynatech Indústrias Químicas LTDA, Horizonte Amidos, and Ingredion.

Letícia Vitorazi would like to thank the Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJ/Brazil for funding (process E-26/202.724/2019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joyce Fagundes Gomes Motta or Letícia Vitorazi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motta, J.F.G., de Souza, A.R., Gonçalves, S.M. et al. Development of active films based on modified starches incorporating the antimicrobial agent lauroyl arginate (LAE) for the food industry. Food Bioprocess Technol 13, 2082–2093 (2020). https://doi.org/10.1007/s11947-020-02548-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-020-02548-0

Keywords

Navigation