Skip to main content

Crystalline Structure in Starch

  • Chapter
Starch

Abstract

Many reviews have been published on the crystalline structure of the starch granule, addressing aspects such as birefringence, crystallinity, and structural models for A- and B-type starches. After a synthetic presentation of the general knowledge on this topic, the present review focuses on a critical description of the main techniques used to investigate the starch crystalline structure, some new data regarding crystalline lamellae, and the most recent models established for the 3D structure of crystalline domains in the granules. Structural and phase transitions occurring during hydrothermal treatments of starch are briefly presented as an introduction to a more detailed description of local order and orientation in amorphous starch materials. Recent results on the structure of amylose complexes which form by heating in the presence of guest molecules are discussed as well. Finally, results regarding the in vitro enzymatic synthesis of amylose, which self-associates into gels or particles, and in vitro enzymatic extension of glycogen external chains are described. They are evaluated as biomimetic systems for a better understanding of the mechanisms involved in starch crystallization during biosynthesis as well as in the different processes used for starch modification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • André I, Potocki-Véronèse G, Morel S, Monsan P, Remaud-Siméon M (2010) Sucrose-acting transglucosidases for biocatalysis. Top Curr Chem 294:25–48

    PubMed  Google Scholar 

  • Ball SG, Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 54:207–233

    CAS  PubMed  Google Scholar 

  • Bear RS (1944) Complex formation between starch and organic molecules. J Am Chem Soc 66:2122–2123

    CAS  Google Scholar 

  • Bernazzani P, Chapados C, Delmas G (2000) Double-helical network in amylose as seen by slow calorimetry and FTIR. J Polym Sci B Polym Phys 38:1662–1677

    CAS  Google Scholar 

  • Biais B, Le Bail P, Robert P, Pontoire B, Buléon A (2006) Structural and stoichiometric studies of complexes between aroma compounds and amylose. Polymorphic transitions and quantification in amorphous and crystalline areas. Carbohydr Polym 66:306–315

    CAS  Google Scholar 

  • Biliaderis CG (1992) Structures and phase transitions of starch in food systems. Food Technol 46:98–109

    CAS  Google Scholar 

  • Booy FP, Chanzy H, Sarko A (1979) Electron diffraction study of single crystals of amylose complexed with n-butanol. Biopolymers 18:2261–2266

    CAS  Google Scholar 

  • Borch J, Sarko A, Marchessault RH (1972) Light scattering of starch granule. J Colloids Interface Sci 41:574–587

    CAS  Google Scholar 

  • Brisson J, Chanzy H, Winter WT (1991) The crystal and molecular structure of VH amylose by electron diffraction analysis. Int J Biol Macromol 13:31–39

    CAS  PubMed  Google Scholar 

  • Buléon A, Colonna P (2007) Physicochemical behaviour of starch in food applications. In: Belton P (ed) The chemical physics of food (Chapter 2). Blackwell Publishing Ltd, Oxford, pp 20–67

    Google Scholar 

  • Buléon A, Duprat F, Booy FP, Chanzy H (1984) Single crystals of amylose with a low degree of polymerization. Carbohydr Polym 4:161–173

    Google Scholar 

  • Buléon A, Bizot H, Delage MM, Pontoire B (1987) Comparison of X-ray diffraction patterns and sorption properties of the hydrolyzed starches of potato, wrinkled and smooth pea, broad bean and wheat. Carbohydr Polym 7:461–482

    Google Scholar 

  • Buléon A, Delage MM, Brisson J, Chanzy H (1990) Single crystals of V amylose complexed with isopropanol and acetone. Int J Biol Macromol 12:25–33

    PubMed  Google Scholar 

  • Buléon A, Pontoire B, Riekel C, Chanzy H, Helbert W, Vuong R (1997) Crystalline ultrastructure of starch granules revealed by synchrotron radiation microdiffraction mapping. Macromolecules 30:3952–3954

    Google Scholar 

  • Buléon A, Gérard C, Riekel C, Vuong R, Chanzy H (1998a) Details of the crystalline ultrastructure of C-starch granules revealed by synchrotron microfocus mapping. Macromolecules 31:6605–6610

    Google Scholar 

  • Buléon A, Colonna P, Planchot V, Ball S (1998b) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112

    PubMed  Google Scholar 

  • Buléon A, Véronèse G, Putaux J-L (2007) Self-association and crystallization of amylose. Aust J Chem 60:706–718

    Google Scholar 

  • Cameron RE, Donald AM (1993) A small-angle X-ray-scattering study of the absorption of water into the starch granule. Carbohydr Res 244:225–236

    CAS  Google Scholar 

  • Capron I, Robert P, Colonna P, Brogly M, Planchot V (2007) Starch in rubbery and glassy states by FTIR spectroscopy. Carbohydr Polym 68:249–259

    CAS  Google Scholar 

  • Cardoso M, Westfahl H (2010) On the lamellar width distributions of starch. Carbohydr Polym 81:21–28

    CAS  Google Scholar 

  • Cardoso MB, Putaux J-L, Nishiyama Y, Helbert W, Hÿtch M, Silveira NP, Chanzy H (2007) Single crystals of V-amylose complexed with α-naphthol. Biomacromolecules 8:1319–1326

    CAS  PubMed  Google Scholar 

  • Chanzy H, Vuong R, Jésior JC (1990) An electron diffraction study on whole granules of lintnerized potato starch. Starch/Staerke 42:377–379

    CAS  Google Scholar 

  • Chanzy H, Putaux J-L, Dupeyre D, Davies R, Burghammer M, Montanari S, Riekel C (2006) Morphological and structural aspects of the giant starch granules from Phajus grandifolius. J Struct Biol 154:100–110

    CAS  PubMed  Google Scholar 

  • Ciric J, Loos K (2013) Synthesis of branched polysaccharides with tunable degree of branching. Carbohydr Polym 93:31–37

    CAS  PubMed  Google Scholar 

  • Cleven R, van den Berg C, van der Plas L (1978) Crystal structure of hydrated potato starch. Starch/Staerke 30:223–228

    CAS  Google Scholar 

  • Colonna P, Buléon A (2010) Thermal transitions of starch. In: Bertolini A (ed) Starch: characterization, properties and applications (Chapter 4). CRC Press, Boca Raton, pp 71–102

    Google Scholar 

  • Conde-Petit B, Escher F, Nuessli J (2006) Structural features of starch-flavor complexation in food model systems. Trends Food Sci Technol 17:227–235

    CAS  Google Scholar 

  • Donald AM, Kato KL, Perry PA, Waigh TA (2001) Scattering studies of the internal structure of starch granules. Starch/Staerke 53:504–512

    CAS  Google Scholar 

  • Encyclopedia of Polymer Science (1987) Mark HF, Bikales, NM, Overberger CG, Menges G, Kroschwitz JI (eds) vol 10. Wiley, New York, p 60

    Google Scholar 

  • Fang JM, Fowler PA, Tomkinson J, Hill CAS (2002) The preparation and characterization of a series of chemically modified potato starches. Carbohydr Polym 47:245–252

    CAS  Google Scholar 

  • French D (1984) Organization of starch granules. In Whistler RL, BeMiller JN, Parschall EF (eds) Starch, chemistry and technology. Academic, New York, pp 183–247

    Google Scholar 

  • French AD, Zobel HF (1967) X-ray diffraction of oriented amylose fibers. I. Amylose dimethyl sulfoxide complex. Biopolymers 5:457–464

    CAS  Google Scholar 

  • Gebhardt R, Hanfland M, Mezouar M, Riekel C (2007) High-pressure potato starch granule gelatinization: synchrotron radiation micro-SAXS/WAXS using a diamond anvil cell. Biomacromolecules 8:2092–2097

    CAS  PubMed  Google Scholar 

  • Gérard C, Planchot V, Colonna P, Bertoft E (2000) Relationship between branching density and crystalline structure of A- and B-type maize mutant starches. Carbohydr Res 326:130–144

    PubMed  Google Scholar 

  • Gernat C, Radosta S, Anger H, Damaschun G (1993) Crystalline parts of 3 different conformations detected in native and enzymatically degraded starches. Starch-Starke 45:309–314

    CAS  Google Scholar 

  • Gidley MJ, Bociek SM (1985) Molecular organization in starches: a 13C CP/MAS NMR study. J Am Chem Soc 107:7040–7044

    CAS  Google Scholar 

  • Gidley MJ, Bociek SM (1988) 13C CP/MAS NMR studies of amylose inclusion complexes, cyclodextrins, and the amorphous phase of starch granules: relationships between glycosidic linkage conformation and solid state 13C chemical shifts. J Am Chem Soc 110:3820–3829

    CAS  Google Scholar 

  • Gidley MJ, Bulpin PV (1987) Crystallisation of malto-oligosaccharides as models of the crystalline forms of starch: minimum chain-length requirement for the formation of double helices. Carbohydr Res 161:291–300

    CAS  Google Scholar 

  • Godet MC, Tran V, Delage MM, Buléon A (1993) Molecular modelling of the specific interactions involved in the amylose complexation by fatty acids. Int J Biol Macromol 15:11–16

    CAS  PubMed  Google Scholar 

  • Grimaud F, Lancelon-Pin C, Rolland-Sabaté A, Roussel X, Laguerre S, Vikso-Nielsen A, Putaux J-L, Guilois S, Buléon A, D’Hulst C, Potocki-Véronèse G (2013) In vitro synthesis of hyperbranched α-glucans using a biomimetic enzymatic toolbox. Biomacromolecules 14:438–447

    CAS  PubMed  Google Scholar 

  • Heinemann C, Zinsli M, Renggli A, Escher F, Conde-Petit B (2005) Influence of amylose-flavor complexation on build-up and breakdown of starch structures in aqueous food model systems. LWT Food Sci Technol 38:885–894

    CAS  Google Scholar 

  • Helbert W (1994) Doctoral dissertation, Joseph Fourier University of Grenoble, France

    Google Scholar 

  • Helbert W, Chanzy H (1994) Single crystals of V amylose complexed with n-butanol or n-pentanol: structural features and properties. Int J Biol Macromol 16:207–213

    CAS  PubMed  Google Scholar 

  • Helbert W, Chanzy H (1996) The ultrastructure of starch from ultrathin sectioning in melamine resin. Starch/Staerke 48:185–188

    CAS  Google Scholar 

  • Helbert W, Chanzy H, Planchot V, Buléon A, Colonna P (1993) Morphological and structural features of amylose spherocrystals of A-type. Int J Biol Macromol 15:183–187

    CAS  PubMed  Google Scholar 

  • Hermans PH, Weidinger A (1948) Quantitative X-ray investigations on the crystallinity of cellulose fibers. A background analysis. J Appl Phys 19:419–506

    Google Scholar 

  • Hewitt JM, Linder M, Pérez S, Buléon A (1986) High-resolution CP-MAS 13C NMR spectra of solid amylodextrins and amylose polymorphs. Carbohydr Res 154:1–13

    CAS  Google Scholar 

  • Hizukuri S (1985) Relationship between the distribution of the chain length of amylopectin and the crystalline structure of starch granules. Carbohydr Res 141:285–306

    Google Scholar 

  • Horii F, Yamamoto H, Hirai A, Kitamaru R (1987) Structural study of amylose polymorphs by cross-polarization-magic-angle spinning, 13C-N.M.R. spectroscopy. Carbohydr Res 160:29–40

    CAS  Google Scholar 

  • Hulleman SHD, Helbert W, Chanzy H (1996) Single crystals of V amylose complexed with glycerol. Int J Biol Macromol 18:115–122

    CAS  PubMed  Google Scholar 

  • Imberty A, Pérez S (1988) A revisit to the three-dimensional structure of B-type starch. Biopolymers 27:1205–1221

    CAS  Google Scholar 

  • Imberty A, Chanzy H, Pérez S, Buléon A, Tran V (1988) The double-helical nature of the crystalline part of A-starch. J Mol Biol 201:365–378

    CAS  PubMed  Google Scholar 

  • Isogai A, Usuda M, Kato T, Uruy T, Atalla RH (1989) Solid state CP/MAS 13C-NMR of cellulose polymorphs. Macromolecules 22:3168–3172

    CAS  Google Scholar 

  • Jarvis MC (1994) Relationship of chemical shift to glycosidic conformation in the solid state 13C NMR spectra of (1–4) linked glucose polymers and oligomers: anomeric and related effects. Carbohydr Res 259:311–318

    CAS  PubMed  Google Scholar 

  • Jenkins PJ, Cameron RE, Donald AM (1993) A universal feature in the structure of starch granules from different botanical sources. Starch/Staerke 45:417–420

    CAS  Google Scholar 

  • Kadokawa J (2012) Preparation and applications of amylose supramolecules by means of phosphorylase-catalyzed enzymatic polymerization. Polymers 4:116–133

    Google Scholar 

  • Kadokawa JI, Kaneko Y, Nagase SI, Takahashi T, Tagaya H (2002) Vine-twinning polymerization: amylose twines around polyether to form amylose-polyether inclusion complexes. Chem Eur J 8:3321–3326

    CAS  PubMed  Google Scholar 

  • Kajiura H, Kakutani R, Akiyama T, Takata H, Kuriki T (2008) A novel enzymatic process for glycogen production. Biocatal Biotransform 26:133–140

    CAS  Google Scholar 

  • Kajiura H, Takata H, Akiyama T, Kakutani R, Furuyashiki T, Kojima I, Harui T, Kuriki T (2011) In vitro synthesis of glycogen: the structure, properties, and physiological function of enzymatically-synthesized glycogen. Biologia 66:387–394

    CAS  Google Scholar 

  • Kaneko Y, Saito Y, Nakaya A, Kadokawa JI, Tagaya H (2008) Preparation of inclusion complexes composed of amylose and strongly hydrophobic polyesters in parallel enzymatic polymerization system. Macromolecules 41:5665–5670

    CAS  Google Scholar 

  • Lemke H, Burghammer M, Flot D, Rössle M, Riekel C (2004) Structural processes during starch granule hydration by synchrotron radiation microdiffraction. Biomacromolecules 5:1316–1324

    CAS  PubMed  Google Scholar 

  • Lopez-Rubio A, Flanagan BM, Gilbert EP, Gidley MJ (2008) A novel approach for calculating starch crystallinity and its correlation with double helix content: a combined XRD and NMR study. Biopolymers 9:761–768

    Google Scholar 

  • Miller RL, Boyer RF, Heijboer J (1984) X-ray scattering from amorphous acrylate and methacrylate polymers: evidence of local order. J Polym Sci Part B Polym Phys 22:2021–2041

    CAS  Google Scholar 

  • Montesanti N, Véronèse G, Buléon A, Escalier PC, Kitamura S, Putaux J-L (2010) A-type crystals from dilute solutions of short amylose chains. Biomacromolecules 11:3049–3058

    CAS  PubMed  Google Scholar 

  • Morgan KR, Furneaux RH, Larsen NG (1995) Solid state NMR studies on the structure of starch granules. Carbohydr Res 276:387–399

    CAS  Google Scholar 

  • Morrison WR, Tester RF, Snape CE, Law R, Gidley MJ (1993a) Swelling and gelatinisation of cereal starches. IV. Some effects of lipid-complexed amylose and free amylose in waxy and normal barley starches. Cereal Chem 70:385–391

    CAS  Google Scholar 

  • Morrison W, Law R, Snape C (1993b) Evidence for inclusion complexes of lipids with V-amylose in maize, rice and oat starches. J Cereal Sci 18:107–109

    CAS  Google Scholar 

  • Nara S, Mori A, Komiya T (1978) Study on relative crystallinity of moist potato starch. Starch/Staerke 30:111–114

    CAS  Google Scholar 

  • Nishiyama Y, Mazeau K, Morin M, Cardoso MB, Chanzy H, Putaux J-L (2010) Molecular and crystal structure of 7-fold V amylose complexed with 2-propanol. Macromolecules 43:8628–8636

    CAS  Google Scholar 

  • Nuessli J, Putaux J-L, Le Bail P, Buléon A (2003) Crystal structure of amylose complexes with small ligands. Int J Biol Macromol 33:227–234

    CAS  PubMed  Google Scholar 

  • Oguchi T, Yamasato H, Limmatvapirat S, Yonemochi E, Yamamoto K (1998) Structural change and complexation of strictly linear amylose induced by sealed-heating with salicylic acid. J Chem Soc Faraday Trans 94:923–927

    CAS  Google Scholar 

  • Ohdan K, Fujii K, Yanase M, Takaha T, Kuriki T (2006) Enzymatic synthesis of amylose. Biocatal Biotransform 24:77–81

    CAS  Google Scholar 

  • Paris M, Bizot H, Emery J, Buzaré JY, Buléon A (1999) Crystallinity and structuring role of water in native and recrystallized starches by 13C CP-MAS NMR spectroscopy 1: spectral decomposition. Carbohydr Polym 39:327–339

    CAS  Google Scholar 

  • Paris M, Bizot H, Emery J, Buzaré JY, Buléon A (2001) NMR local range investigations in amorphous starchy substrates I: structural heterogeneity probed by 13C CP-MAS NM. Int J Biol Macromol 29:127–136

    CAS  PubMed  Google Scholar 

  • Pérez S, Bertoft E (2010) The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch/Staerke 62:389–420

    Google Scholar 

  • Pfannemüller B (1987) Influence of chain length of short monodisperse amyloses on the formation of A- and B-type X-ray diffraction patterns. Int J Biol Macromol 9:105–108

    Google Scholar 

  • Popov D, Burghammer M, Buléon A, Montesanti N, Putaux J-L, Riekel C (2006) A-Amylose single crystals: unit cell refinement from synchrotron radiation microdiffraction data. Macromolecules 39:3704–3706

    CAS  Google Scholar 

  • Popov D, Buléon A, Burghammer M, Chanzy H, Montesanti N, Putaux J-L, Potocki-Véronèse G, Riekel C (2009) Crystal structure of A-amylose: a revisit from synchrotron microdiffraction analysis of single crystals. Macromolecules 42:1167–1174

    CAS  Google Scholar 

  • Potocki-Véronèse G, Putaux J-L, Dupeyre D, Albenne C, Remaud-Simeon M, Monsan P, Buléon A (2005) Amylose synthesized in vitro by amylosucrase: morphology, structure, and properties. Biomacromolecules 6:1000–1011

    PubMed  Google Scholar 

  • Putaux J-L, Molina-Boisseau S, Momaur T, Dufresne A (2003) Platelet nanocrystals resulting from the disruption of waxy maize starch granules by acid hydrolysis. Biomacromolecules 4:1198–1202

    CAS  PubMed  Google Scholar 

  • Putaux J-L, Potocki-Véronèse G, Remaud-Simeon M, Buléon A (2006) α-D-glucan-based dendritic nanoparticles prepared by in vitro enzymatic chain extension of glycogen. Biomacromolecules 7:1720–1728

    CAS  PubMed  Google Scholar 

  • Putaux J-L, Montesanti N, Dupeyre D, Véronèse G, Buléon A (2011a) Morphology and structure of A-amylose single crystals. Polymer 52:2198–2205

    CAS  Google Scholar 

  • Putaux J-L, Nishiyama Y, Mazeau K, Morin M, Cardoso MB, Chanzy H (2011b) Helical conformation in crystalline inclusion complexes of V-amylose: a historical perspective. Macromol Symp 303:1–9

    CAS  Google Scholar 

  • Putseys JA, Lamberts L, Delcour JA (2010) Amylose inclusion complexes: formation, identity and physico-chemical properties. J Cereal Sci 51:238–247

    CAS  Google Scholar 

  • Riekel C (2000) New avenues in X-ray microbeam experiments. Rep Prog Phys 63:233–235

    CAS  Google Scholar 

  • Riekel C, Burghammer M, Davies RJ, DiCola E, Koenig C, Lemke HT, Putaux J-L, Schoeder S (2010) Raster microdiffraction with synchrotron radiation of hydrated biopolymers with nanometre step-resolution: case study of starch granules. J Synchrotron Radiat 17:743–750

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roblin P, Potocki-Véronèse G, Guieysse D, Guérin F, Axelos M, Perez J, Buléon A (2013) SAXS conformational tracking of amylose synthesized by amylosucrases. Biomacromolecules 14:232–239

    CAS  PubMed  Google Scholar 

  • Rolland-Sabaté A, Guilois S, Grimaud F, Lancelon-Pin C, Roussel X, Laguerre S, Viksø-Nielsen A, Putaux J-L, D’Hulst C, Potocki-Véronèse G, Buléon A (2014) Characterization of hyperbranched glycopolymers produced in vitro using enzymes. Anal Bioanal Chem 406:1607–1618

    PubMed  Google Scholar 

  • Rondeau-Mouro C, Le Bail P, Buléon A (2004) Structural Investigation of amylose complexes with small ligands: inter- or intra-helices associations. Int J Biol Macromol 34:309–315

    CAS  PubMed  Google Scholar 

  • Rondeau-Mouro C, Véronèse G, Buléon A (2006) High-resolution solid-state NMR of B-type amylose. Biomacromolecules 7:2455–2460

    CAS  PubMed  Google Scholar 

  • Rundle RE, Edwards FC (1943) The configuration of starch in the starch-iodine complex. IV. An X-ray diffraction investigation of butanol-precipitated amylose. J Am Chem Soc 65:2200–2203

    CAS  Google Scholar 

  • Sevenou O, Hill S, Farhat IA, Mitchell JR (2002) Organization of the external region of the starch granule as determined by infrared microscopy. Int J Biol Macromol 31:79–85

    CAS  PubMed  Google Scholar 

  • Smits ALM, Ruhnau FC, Vliegenthart JFG, Van Soest JJG (1998) Ageing of starch based systems as observed with FT-IR and solid state NMR spectroscopy. Starch-Starke 50:478–483

    CAS  Google Scholar 

  • Sterling C (1960) Crystallinity of potato starch. Starch/Staerke 12:182–185

    CAS  Google Scholar 

  • Takahashi Y, Kumano T, Nishikawa S (2004) Crystal structure of B-amylose. Macromolecules 37:6827–6832

    CAS  Google Scholar 

  • Takeo K, Kuge T (1969) Complex of starchy materials with organic compounds. Part III X-ray studies on amylose and cyclodextrin complexes. Agric Biol Chem 33:1174–1180

    CAS  Google Scholar 

  • Tan I, Flanagan BF, Halley PJ, Whittaker A, Gidley MJ (2007) A method for estimating the nature and relative proportions of amorphous, single, and double-helical components in starch granules by 13C CP/MAS NMR. Biomacromolecules 8:885–891

    CAS  PubMed  Google Scholar 

  • Tang HJ, Mitsunaga TH, Kawamura Y (2006) Molecular arrangement in blocklets and starch granule architecture. Carbohydr Polym 63:555–560

    CAS  Google Scholar 

  • Tanner SF, Ring SG, Whittam MA, Belton PS (1987) High resolution solid state 13C NMR study of some α(1–4) linked glucans: the influence of water on structure and spectra. Int J Biol Macromol 9:219–224

    CAS  Google Scholar 

  • Thérien-Aubin H, Janvier F, Baille WE, Zhu XX, Marchessault RH (2007) Study of hydration of cross-linked high amylose starch by solid state 13C NMR spectroscopy. Carbohydr Res 342:1525–1529

    PubMed  Google Scholar 

  • Tomasik P, Schilling CH (1998a) Complexes of starch with inorganic guests. Adv Carbohydr Chem Biochem 53:263–343

    CAS  Google Scholar 

  • Tomasik P, Schilling CH (1998b) Complexes of starch with organic guests. Adv Carbohydr Chem Biochem 53:345–426

    CAS  Google Scholar 

  • van Soest JJG, Tournois H, de Wit D, Vliegenthart JFG (1995) Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydr Res 279:201–214

    Google Scholar 

  • Véchambre C, Buléon A, Chaunier L, Jamme F, Lourdin D (2010) Macromolecular orientation in glassy starch materials that exhibit shape memory behavior. Macromolecules 43:9854–9858

    Google Scholar 

  • Véchambre C, Buléon A, Chaunier L, Gauthier C, Lourdin D (2011) Understanding the mechanisms involved in shape memory starch: orientation, stress recovery and molecular mobility. Macromolecules 44:9384–9389

    Google Scholar 

  • Veregin RP, Fyfe CA, Marchessault RH, Taylor MG (1986) Characterization of the crystalline A and B starch polymorphs and investigation of starch crystallization by high-resolution 13C CP/MAS NMR. Macromolecules 19:1030–1034

    CAS  Google Scholar 

  • Veregin RP, Fyfe CA, Marchessault RH, Taylor MG (1987) Correlation of 13C chemical shifts with torsional angles from high-resolution, 13C-C.P.-M.A.S. N.M.R. studies of crystalline cyclomalto-oligosaccharide complexes, and their relation to the structures of the starch polymorphs. Carbohydr Res 160:41–56

    CAS  Google Scholar 

  • Vermeylen R, Goderis B, Reynaers H, Delcour JA (2004) Amylopectin molecular structure reflected in macromolecular organization of granular starch. Biomacromolecules 5:1775–1786

    CAS  PubMed  Google Scholar 

  • Waigh TA, Hopkinson I, Donald AM, Butler MF, Heidelbach F, Riekel C (1997) Analysis of the native structure of starch granules with X-ray microfocus diffraction. Macromolecules 30:3813–3820

    CAS  Google Scholar 

  • Wakelin JH, Virgin HS, Crystal E (1959) Development and comparison of two X-ray methods for determining the crystallinity of cotton cellulose. J Appl Phys 30:1654–1662

    CAS  Google Scholar 

  • Whittam MA, Noe TR, Ring SG (1990) Melting behaviour of A- and B-type starches. Int J Biol Macromol 12:359–362

    CAS  PubMed  Google Scholar 

  • Wikman J, Blennow A, Buléon A, Putaux J-L, Pérez S, Seetharaman K, Bertoft E (2014) Influence of amylopectin structure and degree of phosphorylation on the molecular composition of potato starch lintners. Biopolymers 101:257–271

    CAS  PubMed  Google Scholar 

  • Willenbucher RW, Tomka I, Muller R (1992) Thermally induced structural transitions in the starch/water system. Proceedings of the symposium on Division of Carbohydrate Chemistry and American Chemistry Society. In Bartens A (ed) Carbohydrates in industrial synthesis. Springer, Berlin, pp 93–111

    Google Scholar 

  • Wilson RH, Kalichevsky MT, Ring SG, Belton PS (1987) A Fourier-transform infrared study of the gelation and retrogradation of waxy-maize starch. Carbohydr Res 166:162–165

    CAS  Google Scholar 

  • Wu HC, Sarko A (1978a) The double-helical molecular structure of crystalline A-amylose. Carbohydr Res 61:27–40

    CAS  Google Scholar 

  • Wu HC, Sarko A (1978b) The double-helical molecular structure of crystalline B-amylose. Carbohydr Res 61:7–25

    CAS  Google Scholar 

  • Yamashita Y, Hirai N (1966) Single crystals of amylose V complexes. II. Crystals with 71 helical configuration. J Polym Sci Part A-2 4:161–171

    CAS  Google Scholar 

  • Yamashita Y, Monobe K (1971) Single crystals of amylose V complexes. III. Crystals with 81 helical configuration. J Polym Sci Part A-2 9:1471–1481

    CAS  Google Scholar 

  • Yamashita Y, Ryugo J, Monobe K (1973) An electron microscopic study on crystals of amylose V complexes. J Electron Microsc 22:19–26

    CAS  Google Scholar 

  • Zaslow B (1963) Characterization of a second helical amylose modification. Biopolymers 1:165–169

    CAS  Google Scholar 

  • Zobel HF (1988) Molecules to granules: a comprehensive starch review. Starch/Staerke 40:44–55

    CAS  Google Scholar 

  • Zobel HF, French AD, Hinkle ME (1967) X‐ray diffraction of oriented amylose fibers. II. Structure of V amyloses. Biopolymers 5:837–845

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Lourdin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Lourdin, D., Putaux, JL., Potocki-Véronèse, G., Chevigny, C., Rolland-Sabaté, A., Buléon, A. (2015). Crystalline Structure in Starch. In: Nakamura, Y. (eds) Starch. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55495-0_3

Download citation

Publish with us

Policies and ethics