Skip to main content
Log in

Electrohydrodynamic Encapsulation of Resveratrol Using Food-Grade Nanofibres: Process Optimization, Characterization and Fortification

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Utilization of resveratrol as a nutraceutical in foods is limited due to its low bioavailability and chemical instability. Therefore, resveratrol was encapsulated into nanofibres by electrospinning at concentrations of 15, 18 and 21% TS, applied voltage of 13, 18 and 23 kV and feed rates of 0.6 and 1 mL/h using WPI-pullulan as wall material. Electrospinning conditions were optimized as 18% TS, 18 kV applied voltage and 0.6 mL/h flow rate. SEM images showed formation of clean and continuous fibres at 18 and 23 kV applied voltage, with a mean fibre diameter of 63 to 208 nm and encapsulation efficiency of 74 and 96.70%. Successful encapsulation of resveratrol was confirmed by FTIR and XRD analyses. The zeta potential of resveratrol-loaded nanofibres was in the range of − 20.5 to − 32.2 mV, suggestive of higher stability. The antioxidant property of resveratrol in nanofibres was retained. No significant physiochemical and sensorial changes were observed in resveratrol fortified milk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Augustin, M. A., Sanguansri, L., & Lockett, T. (2013). Nano-and micro-encapsulated systems for enhancing the delivery of resveratrol. Annals of the New York Academy of Sciences, 1290(1), 107–112.

    Article  CAS  Google Scholar 

  • Borel, T., & Sabliov, C. M. (2014). Nanodelivery of bioactive components for food applications: types of delivery systems, properties, and their effect on ADME profiles and toxicity of nanoparticles. Annual Review of Food Science and Technology, 5, 197–213.

    Article  CAS  Google Scholar 

  • Cerqueira, M. A., Fabra, M. J., Castro-Mayorga, J. L., Bourbon, A. I., Pastrana, L. M., Vicente, A. A., & Lagaron, J. M. (2016). Use of electrospinning to develop antimicrobial biodegradable multilayer systems: encapsulation of cinnamaldehyde and their physicochemical characterization. Food and Bioprocess Technology, 9(11), 1874–1884.

    Article  CAS  Google Scholar 

  • da Rocha Lindner, G., Khalil, N. M., & Mainardes, R. M. (2013). Resveratrol-loaded polymeric nanoparticles: validation of an HPLC-PDA method to determine the drug entrapment and evaluation of its antioxidant activity. The Scientific World Journal, 2013, 1–9.

    Article  Google Scholar 

  • Deng, L., Kang, X., Liu, Y., Feng, F., & Zhang, H. (2017). Effects of surfactants on the formation of gelatin nanofibres for controlled release of curcumin. Food Chemistry, 231, 70–77.

    Article  CAS  Google Scholar 

  • Elakkiya, T., Malarvizhi, G., Rajiv, S., & Natarajan, T. S. (2013). Curcumin loaded electrospun Bombyx mori silk nanofibers for drug delivery. Polymer International, 63(1), 100–105.

    Article  Google Scholar 

  • Fulda, S. (2010). Resveratrol and derivatives for the prevention and treatment of cancer. Drug Discovery Today, 15(17–18), 757–765.

    Article  CAS  Google Scholar 

  • Hadad, S., & Goli, S. A. H. (2019). Improving oxidative stability of flaxseed oil by encapsulation in electrospun flaxseed mucilage nanofiber. Food and Bioprocess Technology, 12(5), 829–838.

    Article  CAS  Google Scholar 

  • Horuz, T. İ., & Belibağlı, K. B. (2017). Production of electrospun gelatin nanofibers: an optimization study by using Taguchi’s methodology. Materials Research Express, 4(1), 1–10.

    Google Scholar 

  • Jayan, H., Leena, M. M., Sundari, S. K. S., Moses, J. A., & Anandharamakrishan, C. (2019). Improvement of bioavailability for resveratrol through encapsulation in zein using electrospraying technique. Journal of Functional Foods, 57, 417–424.

    Article  CAS  Google Scholar 

  • Ki, C. S., Baek, D. H., Gang, K. D., Lee, K. H., Um, I. C., & Park, Y. H. (2005). Characterization of gelatin nanofiber prepared from gelatin-formic acid solution. Polymer, 46(14), 5094–5102.

  • Luo, C. J., Loh, S., Stride, E., & Edirisinghe, M. (2012). Electrospraying and electrospinning of chocolate suspensions. Food and Bioprocess Technology, 5(6), 2285–2300.

    Article  CAS  Google Scholar 

  • Moomand, K., & Lim, L. T. (2015). Properties of encapsulated fish oil in electrospun zein fibres under simulated in vitro conditions. Food and Bioprocess Technology, 8(2), 431–444.

    Article  CAS  Google Scholar 

  • Pando, D., Beltran, M., Gerone, I., Matos, M., & Pazos, C. (2015). Resveratrol entrapped niosomes as yoghurt additive. Food Chemistry, 170, 281–287.

    Article  CAS  Google Scholar 

  • Petrovski, G., Gurusamy, N., & Das, D. K. (2011). Resveratrol in cardiovascular health and disease. Annals of the New York Academy of Sciences, 1215(1), 22–33.

    Article  Google Scholar 

  • Pérez-Masiá, R., Lagaron, J. M., & López-Rubio, A. (2014). Development and optimization of novel encapsulation structures of interest in functional foods through electrospraying. Food and Bioprocess Technology, 7(11), 3236–3245.

    Article  Google Scholar 

  • Pérez-Masiá, R., Lagaron, J. M., & Lopez-Rubio, A. (2015). Morphology and stability of edible lycopene-containing micro-and nanocapsules produced through electrospraying and spray drying. Food and Bioprocess Technology, 8(2), 459–470.

    Article  Google Scholar 

  • Riccitiello, F., De Luise, A., Conte, R., D'Aniello, S., Vittoria, V., Di Salle, A., & Peluso, G. (2018). Effect of resveratrol release kinetic from electrospun nanofibers on osteoblast and osteoclast differentiation. European Polymer Journal, 99, 289–297.

    Article  CAS  Google Scholar 

  • Rius, C., Abu-Taha, M., Hermenegildo, C., Piqueras, L., Cerda-Nicolas, J. M., Issekutz, A. C., & Sanz, M. J. (2010). Trans-but not cis-resveratrol impairs angiotensin-II-mediated vascular inflammation through inhibition of NF-κB activation and peroxisome proliferator-activated receptor-γ upregulation. The Journal of Immunology, 185(6), 3718–3727.

    Article  CAS  Google Scholar 

  • Siddiqui, I. A., Sanna, V., Ahmad, N., Sechi, M., & Mukhtar, H. (2015). Resveratrol nanoformulation for cancer prevention and therapy. Annals of the New York Academy of Sciences, 1348(1), 20–31.

    Article  CAS  Google Scholar 

  • Tavassoli-Kafrani, E., Goli, S. A. H., & Fathi, M. (2018). Encapsulation of orange essential oil using cross-linked electrospun gelatin nanofibers. Food and Bioprocess Technology, 11(2), 427–434.

    Article  CAS  Google Scholar 

  • Tong, Q., Xiao, Q., & Lim, L. T. (2008). Preparation and properties of pullulan–alginate–carboxymethylcellulose blend films. Food Research International, 41(10), 1007–1014.

    Article  CAS  Google Scholar 

  • Torkamani, A. E., Syahariza, Z. A., Norziah, M. H., Mahmood, W. A. K., & Juliano, P. (2018). Production and characterization of gelatin spherical particles formed via electrospraying and encapsulated with polyphenolic antioxidants from Momordica charantia. Food and Bioprocess Technology, 11(11), 1943–1954.

    Article  CAS  Google Scholar 

  • Vankayala, J. S., Battula, S. N., Kandasamy, R., Mariya, G. A., Franklin, M. E. E., Pushpadass, H. A., & Naik, L. N. (2018). Surfactants and fatty alcohol based novel nanovesicles for resveratrol: Process optimization, characterization and evaluation of functional properties in RAW 264.7 macrophage cells. Journal of Molecular Liquids, 261, 387–396.

    Article  CAS  Google Scholar 

  • Venuti, V., Cannavà, C., Cristiano, M. C., Fresta, M., Majolino, D., Paolino, D., & Ventura, C. A. (2014). A characterization study of resveratrol/sulfobutyl ether-β-cyclodextrin inclusion complex and in vitro anticancer activity. Colloids and Surfaces B: Biointerfaces, 115, 22–28.

    Article  CAS  Google Scholar 

  • Zheng, Y. Y., Viswanathan, B., Kesarwani, P., & Mehrotra, S. (2012). Dietary agents in cancer prevention: an immunological perspective. Photochemistry and Photobiology, 88(5), 1083–1098.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Director-National Dairy Research Institute, Karnal, for his support in providing other facilities. The authors extend their sincere thanks to Sami Labs, Bengaluru, India, for providing resveratrol on gratis for this research work.

Funding

This study was funded by the National Agriculture Science Fund of Indian Council of Agricultural Research, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heartwin A. Pushpadass.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seethu, B., Pushpadass, H.A., Emerald, F.M.E. et al. Electrohydrodynamic Encapsulation of Resveratrol Using Food-Grade Nanofibres: Process Optimization, Characterization and Fortification. Food Bioprocess Technol 13, 341–354 (2020). https://doi.org/10.1007/s11947-019-02399-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02399-4

Keywords

Navigation