Skip to main content
Log in

Production and Characterization of Gelatin Spherical Particles Formed via Electrospraying and Encapsulated with Polyphenolic Antioxidants from Momordica charantia

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This study dealt with the production and characterization of gelatin nanospheres and encapsulation with Momordica charantia, commonly known as bitter gourd fruit vegetable extract (BGE). The impact of encapsulation and increasing the encapsulate loading on various physiochemical characteristics of gelatin polymeric entities as well as antioxidative attributes of BGE was studied. Nanospheres were formed via an electrospraying process conducted at 20 kV, 0.5 mL/h, and 10 cm of voltage, flow rate, and emitter/collector distance, respectively. The spherical beads were encapsulated with BGE at 5 to 15% (w/w%) loading rate. Morphological analysis through scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrated that nanospheres could be successfully produced. Furthermore, nanosphere encapsulation of the extract was demonstrated in transmission electron microscope (TEM) micrographs. Spectroscopic analysis indicated no chemical interactions between core and wall materials. The thermal stability of encapsulated nanoparticles slightly increased and the glass transition temperature (Tg) disappeared due to increased crystallinity. Thermogravimetric graphs of encapsulated spherical beads, at all core loadings, showed an additional phase ranging from 138 to 249 °C, overlapping with the BGE’s main TGA degradation phase. The presence of this phase, which was absent from empty bead thermograms, confirmed encapsulation occurrence during electrospraying process. Furthermore, an average of 80% of antioxidative content and potency of the extract was conserved during the encapsulation process. Moreover, phenolic content and antioxidative activity of the encapsulated extract showed higher stability than extracts while stored at refrigerated and ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anu Bhushani, J., & Anandharamakrishnan, C. (2014). Electrospinning and electrospraying techniques: Potential food based applications. Trends in Food Science & Technology, 38(1), 21–33.

    Article  CAS  Google Scholar 

  • Bakhshi, P. K., Nangrejo, M. R., Stride, E., & Edirisinghe, M. (2013). Application of electrohydrodynamic technology for folic acid encapsulation. Food and Bioprocess Technology, 6(7), 1837–1846.

    Article  CAS  Google Scholar 

  • Birnbaum, D. T., Kosmala, J. D., Henthorn, D. B., & Brannon-Peppas, L. (2000). Controlled release of β-estradiol from PLAGA microparticles: The effect of organic phase solvent on encapsulation and release. Journal of Controlled Release, 65(3), 375–387.

    Article  CAS  PubMed  Google Scholar 

  • Biscarat, J., Bechelany, M., Pochat-Bohatier, C., & Miele, P. (2015). Graphene-like BN/gelatin nanobiocomposites for gas barrier applications. Nanoscale, 7(2), 613–618.

    Article  CAS  PubMed  Google Scholar 

  • Budrat, P., & Shotipruk, A. (2009). Enhanced recovery of phenolic compounds from bitter melon (Momordica charantia) by subcritical water extraction. Separation and Purification Technology, 66(1), 125–129.

    Article  CAS  Google Scholar 

  • Correia, D. M., Padrão, J., Rodrigues, L. R., Dourado, F., Lanceros-Méndez, S., & Sencadas, V. (2013). Thermal and hydrolytic degradation of electrospun fish gelatin membranes. Polymer Testing, 32(5), 995–1000.

    Article  CAS  Google Scholar 

  • Dandawate, P. R., Subramaniam, D., Padhye, S. B., & Anant, S. (2016). Bitter melon: A panacea for inflammation and cancer. Chinese Journal of Natural Medicines, 14(2), 81–100.

    Article  PubMed  PubMed Central  Google Scholar 

  • Deitzel, J. M., Kleinmeyer, J., Harris, D., & Beck Tan, N. C. (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42(1), 261–272.

    Article  CAS  Google Scholar 

  • Ezhilarasi, P. N., Karthik, P., Chhanwal, N., & Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: A review. Food and Bioprocess Technology, 6(3), 628–647.

    Article  CAS  Google Scholar 

  • Fang, E. F., Zhang, C. Z. Y., Wong, J. H., Shen, J. Y., Li, C. H., & Ng, T. B. (2012). The MAP30 protein from bitter gourd (Momordica charantia) seeds promotes apoptosis in liver cancer cells in vitro and in vivo. Cancer Letters, 324(1), 66–74.

    Article  CAS  PubMed  Google Scholar 

  • Fong, H., Chun, I., & Reneker, D. H. (1999). Beaded nanofibers formed during electrospinning. Polymer, 40(16), 4585–4592.

    Article  CAS  Google Scholar 

  • Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40(9), 1107–1121.

    Article  CAS  Google Scholar 

  • GMIA. (1986). Standard methods for the sampling and testing of gelatins. New York: Gelatin Manufacturers of America Inc..

    Google Scholar 

  • Gómez-Estaca, J., Gavara, R., & Hernández-Muñoz, P. (2015). Encapsulation of curcumin in electrosprayed gelatin microspheres enhances its bioaccessibility and widens its uses in food applications. Innovative Food Science & Emerging Technologies, 29, 302–307.

    Article  CAS  Google Scholar 

  • Gómez-Mascaraque, L. G., Lagarón, J. M., & López-Rubio, A. (2015). Electrosprayed gelatin submicroparticles as edible carriers for the encapsulation of polyphenols of interest in functional foods. Food Hydrocolloids, 49, 42–52.

    Article  CAS  Google Scholar 

  • Hani, N., Azarian, M. H., Torkamani, A. E., & Kamil Mahmood, W. A. (2016). Characterisation of gelatin nanoparticles encapsulated with Moringa oleifera bioactive extract. International Journal of Food Science & Technology, 51(11), 2327–2337.

    Article  CAS  Google Scholar 

  • Hani, N. M., Torkamani, A. E., Azarian, M. H., Mahmood, K. W. A., & Ngalim, S. H. (2017). Characterisation of electrospun gelatine nanofibres encapsulated with Moringa oleifera bioactive extract. Journal of the Science of Food and Agriculture, 97(10), 3348–3358.

    Article  CAS  PubMed  Google Scholar 

  • Jaworek, A., & Sobczyk, A. T. (2008). Electrospraying route to nanotechnology: An overview. Journal of Electrostatics, 66(3–4), 197–219.

    Article  CAS  Google Scholar 

  • Kenny, O., Smyth, T. J., Hewage, C. M., & Brunton, N. P. (2013). Antioxidant properties and quantitative UPLC-MS analysis of phenolic compounds from extracts of fenugreek (Trigonella foenum-graecum) seeds and bitter melon (Momordica charantia) fruit. Food Chemistry, 141(4), 4295–4302.

    Article  CAS  PubMed  Google Scholar 

  • Kriegel, C., Kit, K. M., McClements, D. J., & Weiss, J. (2009). Influence of surfactant type and concentration on electrospinning of chitosan–poly(ethylene oxide) blend nanofibers. Food Biophysics, 4(3), 213–228.

    Article  Google Scholar 

  • Lin, K.-W., Yang, S.-C., & Lin, C.-N. (2011). Antioxidant constituents from the stems and fruits of Momordica charantia. Food Chemistry, 127(2), 609–614.

    Article  CAS  PubMed  Google Scholar 

  • López-Rubio, A., & Lagaron, J. M. (2011). Improved incorporation and stabilisation of β-carotene in hydrocolloids using glycerol. Food Chemistry, 125(3), 997–1004.

    Article  CAS  Google Scholar 

  • López-Rubio, A., & Lagaron, J. M. (2012). Whey protein capsules obtained through electrospraying for the encapsulation of bioactives. Innovative Food Science & Emerging Technologies, 13, 200–206.

    Article  CAS  Google Scholar 

  • López-Rubio, A., Sanchez, E., Wilkanowicz, S., Sanz, Y., & Lagaron, J. M. (2012). Electrospinning as a useful technique for the encapsulation of living bifidobacteria in food hydrocolloids. Food Hydrocolloids, 28(1), 159–167.

    Article  CAS  Google Scholar 

  • Mit-uppatham, C., Nithitanakul, M., & Supaphol, P. (2004). Ultrafine electrospun polyamide-6 fibers: Effect of solution conditions on morphology and average fiber diameter. Macromolecular Chemistry and Physics, 205(17), 2327–2338.

    Article  CAS  Google Scholar 

  • Neo, Y. P., Ray, S., Jin, J., Gizdavic-Nikolaidis, M., Nieuwoudt, M. K., Liu, D., & Quek, S. Y. (2013). Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: A physicochemical study based on zein–gallic acid system. Food Chemistry, 136(2), 1013–1021.

    Article  CAS  PubMed  Google Scholar 

  • Norziah, M. H., Al-Hassan, A., Khairulnizam, A. B., Mordi, M. N., & Norita, M. (2009). Characterization of fish gelatin from surimi processing wastes: Thermal analysis and effect of transglutaminase on gel properties. Food Hydrocolloids, 23(6), 1610–1616.

    Article  CAS  Google Scholar 

  • Ortenzi, M. A., Basilissi, L., Farina, H., Di Silvestro, G., Piergiovanni, L., & Mascheroni, E. (2015). Evaluation of crystallinity and gas barrier properties of films obtained from PLA nanocomposites synthesized via “in situ” polymerization of l-lactide with silane-modified nanosilica and montmorillonite. European Polymer Journal, 66, 478–491.

    Article  CAS  Google Scholar 

  • Pérez-Masiá, R., Lagaron, J. M., & López-Rubio, A. (2014). Development and optimization of novel encapsulation structures of interest in functional foods through electrospraying. [journal article]. Food and Bioprocess Technology, 7(11), 3236–3245.

    Article  CAS  Google Scholar 

  • Pérez-Masiá, R., López-Nicolás, R., Periago, M. J., Ros, G., Lagaron, J. M., & López-Rubio, A. (2015). Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chemistry, 168, 124–133.

    Article  CAS  PubMed  Google Scholar 

  • Syahariza, Z. A., Torkamani, A. E., Norziah, H. M., Mahmood, W. A. K., & Juliano, P. (2017). Optimisation of pressurised liquid extraction for antioxidative polyphenolic compound from Momordica charantia using response surface methodology. International Journal of Food Science & Technology, 52(2), 480–493.

    Article  CAS  Google Scholar 

  • Xu, Y., & Hanna, M. A. (2006). Electrospray encapsulation of water-soluble protein with polylactide: Effects of formulations on morphology, encapsulation efficiency and release profile of particles. International Journal of Pharmaceutics, 320(1), 30–36.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, P., & Regenstein, J. M. (2005). Effects of alkaline and acid pretreatments on Alaska Pollock skin gelatin extraction. Journal of Food Science, 70(6), 392–396.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Universiti Sains Malaysia (USM) for providing Research University Individual (RUI) research grant (1001/PKIMIA/811276). Furthermore, the first author appreciates the financial support provided by USM under fellowship scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zainul Abidin Syahariza.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 5657 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torkamani, A.E., Syahariza, Z.A., Norziah, M.H. et al. Production and Characterization of Gelatin Spherical Particles Formed via Electrospraying and Encapsulated with Polyphenolic Antioxidants from Momordica charantia. Food Bioprocess Technol 11, 1943–1954 (2018). https://doi.org/10.1007/s11947-018-2153-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-018-2153-y

Keywords

Navigation