Skip to main content
Log in

Development of Microbial Oil Wax-Based Oleogel with Potential Application in Food Formulations

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Bio-based wax esters derived from microbial oil have been evaluated as a novel raw material for the production of olive oil–based oleogel. The oleaginous yeast Rhodosporidium toruloides was cultivated in batch fermentation using very high polarity cane sugar as carbon source for the production of a total dry weight of 23.8 g/L with an intracellular microbial oil content of 34% (w/w). The microbial oil was enzymatically converted into oleyl and cetyl wax esters using non-commercial lipases. The highest oil to ester conversion yields for oleyl (94%) and cetyl (91.3%) wax esters were achieved at 40 °C and 50 °C, respectively. When limonene was used as green solvent in the esterification reaction, the high melting temperature cetyl wax esters were produced at 35 °C with a high conversion yield of 87.5%. Subsequently, the microbial oil–derived cetyl wax esters were used for the production of the olive oil–based oleogel. The evaluation of the physical properties (i.e., color, crystal morphology, texture, rheological, and thermal behavior) of the oleogel showed that it was rheologically and thermally suitable for applications in spreadable fat products. This study demonstrated that microbial oil derivatives could be used as novel bio-based raw materials in the preparation of oleogels with potential use in fat-based food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguieiras, E. C. G., Cavalcanti-Oliveira, E. D., de Castro, A. M., Langone, M. A. P., & Freire, D. M. G. (2014). Biodiesel production from Acrocomia aculeata acid oil by (enzyme/enzyme) hydroesterification process: use of vegetable lipase and fermented solid as low-cost biocatalysts. Fuel, 135, 315–321.

    Article  CAS  Google Scholar 

  • Aksu, Z., & Eren, A. T. (2007). Production of carotenoids by the isolated yeast of Rhodotorula glutinis. Biochemical Engineering Journal, 35(2), 107–113.

    Article  CAS  Google Scholar 

  • Anonymous. (2016). Modern Technology of Printing & Writing Inks (with Formulae & Processes). NIIR Board of Consultants & Engineers, Asia Pacific Business Press Inc.

  • Bemer, H. L., Limbaugh, M., Cramer, E. D., Harper, W. J., & Maleky, F. (2016). Vegetable organogels incorporation in cream cheese products. Food Research International, 85, 67–75.

    Article  CAS  PubMed  Google Scholar 

  • Blake, A. I., & Marangoni, A. G. (2015). Plant wax crystals display platelet-like morphology. Food Structure, 3, 30–34.

    Article  Google Scholar 

  • Carr, R. A., & Vaisey-Genser, M. (2003). Margarine, Methods of Manufacture. In Encyclopedia of Food Sciences and Nutrition (Second Edition), edited by Benjamin Caballero (pp. 3709–3714). Oxford: Academic Press.

    Chapter  Google Scholar 

  • Cavalcanti, E. D. C., Maciel, F. M., Villeneuve, P., Lago, R. C. A., Machado, O. L. T., & Freire, D. M. G. (2007). Acetone powder from dormant seeds of Ricinus communis L: lipase activity and presence of toxic and allergenic compounds. Applied Biochemistry and Biotechnology, 136-140(1-12), 57–65.

    Article  Google Scholar 

  • Chaves, K. F., Barrera-Arellano, D., & Ribeiro, A. P. B. (2018). Potential application of lipid organogels for food industry. Food Research International, 105, 863–872.

    Article  CAS  PubMed  Google Scholar 

  • Cipolatti, E. P., Pinto, M. C. C., de Macedo Robert, J., da Silva, T. P., da Costa Beralto, T., Santos Jr., J. G. F., et al. (2018). Pilot-scale development of core-shell polymer supports for the immobilization of recombinant lipase B from Candida antarctica and their application in the production of ethyl esters from residual fatty acids. Journal of Applied Polymer Science, 135(40). https://doi.org/10.1002/app.46727.

  • Cirillo, N. A., Quirrenbach, C. G., Corazza, M. L., & Voll, F. A. V. (2018). Enzymatic kinetics of cetyl palmitate synthesis in a solvent-free system. Biochemical Engineering Journal, 137, 116–124.

    Article  CAS  Google Scholar 

  • Cramer, E. D. (2016). Rice Bran Wax Oleogel Water Holding Capacity and Its Effects on the Physical Properties of the Network. M.Sc. Thesis, Ohio State University.

  • de Castro, A. M., Bevilaqua, J. V., Freire, D. M. G., Torres, F. A., Sant’anna, L. M. M., Gutarra, M. L. E. et al. (2011). Process for the production of lipases by genetic modification of yeast. US20110183400A1.

  • Deman, J. M., & Beers, A. M. (1987). Fat crystal networks: structure and rheological properties. Journal of Texture Studies, 18(4), 303–318.

    Article  Google Scholar 

  • Fayaz, G., Goli, S. A. H., Kadivar, M., Valoppi, F., Barba, L., Calligaris, S., & Nicoli, M. C. (2017). Potential application of pomegranate seed oil oleogels based on monoglycerides, beeswax and propolis wax as partial substitutes of palm oil in functional chocolate spread. LWT - Food Science and Technology, 86, 523–529.

    Article  CAS  Google Scholar 

  • Fei, T., & Wang, T. (2017). A review of recent development of sustainable waxes derived from vegetable oils. Current Opinion in Food Science, 16, 7–14.

    Article  Google Scholar 

  • Fernandes, K. V., Papadaki, A., da Silva, J. A. C., Fernandez-Lafuente, R., Koutinas, A. A., & Freire, D. M. G. (2018). Enzymatic esterification of palm fatty-acid distillate for the production of polyol esters with biolubricant properties. Industrial Crops and Products, 116, 90–96.

    Article  CAS  Google Scholar 

  • Freire, D. M. G., Gomes, P. M., Bom, E. P. S., & Sant’Anna, G. L., Jr. (1997). Lipase production by a new promising strain of Penicillium restrictum. Revista de Microbiologia, 28, 6–12.

    Google Scholar 

  • Hartel, R. W., von Elbe, J. H., & Hofberger, R. (2018). Fats, Oils and Emulsifiers. In Confectionery Science and Technology (pp. 85–124). Cham: Springer.

    Chapter  Google Scholar 

  • Hernández-Martín, E., & Otero, C. (2008). Different enzyme requirements for the synthesis of biodiesel: Novozym 435 and Lipozyme-TL IM. Bioresource Technology, 99(2), 277–286.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, H. S., Gillman, J. D., Winkler-Moser, J. K., Kim, S., Singh, M., Byars, J. A., & Evangelista, R. L. (2018). Properties of oleogels formed with high-stearic soybean oils and sunflower wax. Journal of the American Oil Chemists' Society, 95(5), 557–569. https://doi.org/10.1002/aocs.12060.

    Article  CAS  Google Scholar 

  • Hwang, H.-S., Kim, S., Evans, K. O., Koga, C., & Lee, Y. (2015). Morphology and networks of sunflower wax crystals in soybean oil organogel. Food Structure, 5, 10–20.

    Article  Google Scholar 

  • Hwang, H. S., Singh, M., Bakota, E. L., Winkler-Moser, J. K., Kim, S., & Liu, S. X. (2013). Margarine from organogels from plant wax and soybean oil. Journal of the American Oil Chemists' Society, 90(11), 1705–1712.

    Article  CAS  Google Scholar 

  • Hwang, H. S., Kim, S., Singh, M., Winkler-Moser, J., & Liu, S. (2012). Organogel formation of soybean oil with waxes. Journal of the American Oil Chemists' Society, 89(4), 639–647.

    Article  CAS  Google Scholar 

  • Imai, T., Nakamura, K., & Shibata, M. (2001). Relationship between the hardness of an oil–wax gel and the surface structure of the wax crystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 194(1-3), 233–237.

    Article  CAS  Google Scholar 

  • Kachrimanidou, V., Kopsahelis, N., Chatzifragkou, A., Papanikolaou, S., Yanniotis, S., Kookos, I., & Koutinas, A. A. (2013). Utilisation of by-products from sunflower-based biodiesel production processes for the production of fermentation feedstock. Waste and Biomass Valorization, 4(3), 529–537.

    Article  CAS  Google Scholar 

  • Kopsahelis, N., Dimou, C., Papadaki, A., Xenopoulos, E., Kyraleou, M., Kallithraka, S., Kotseridis, Y., Papanikolaou, S., & Koutinas, A. A. (2018). Refining of wine lees and cheese whey for the production of microbial oil, polyphenol-rich extracts and value-added co-products. Journal of Chemical Techology and Biotechnology, 93(1), 257–268.

    Article  CAS  Google Scholar 

  • Lee, J. H., Akoh, C. C., Himmelsbach, D. S., & Lee, K. T. (2008). Preparation of interesterified plastic fats from fats and oils free of trans fatty acid. Journal of Agricultural and Food Chemistry, 56(11), 4039–4046.

    Article  CAS  PubMed  Google Scholar 

  • Lim, J., Jeong, S., Lee, J., Park, S., Lee, J., & Lee, S. (2017). Effect of shortening replacement with oleogels on the rheological and tomographic characteristics of aerated baked goods. Journal of Agricultural and Food Chemistry, 97(11), 3727–3732.

    Article  CAS  Google Scholar 

  • Manoel, E. A., Robert, J. M., Pinto, M. C. C., Machado, A. C. O., Besteti, M. D., Coelho, M. A. Z., Simas, A. B. C., Fernandez-Lafuente, R., Pinto, J. C., & Freire, D. M. G. (2016). Evaluation of the performance of differently immobilized recombinant lipase B from Candida antarctica preparations for the synthesis of pharmacological derivatives in organic media. RSC Advances, 6(5), 4043–4052.

    Article  CAS  Google Scholar 

  • Matheson, A., Dalkas, G., Clegg, P. S., & Euston, S. R. (2018). Phytosterol-based edible oleogels: a novel way of replacing saturated fat in food. Nutrition Bulletin, 43(2), 189–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattice, K. D., & Marangoni, A. G. (2017). New Insights into Wax Crystal Networks in Oleogels. In A. R. Patel (Ed.), Edible Oil Structuring, Concepts, Methods and Applications (pp. 71–94). UK: The Royal Society of Chemistry.

    Google Scholar 

  • Moghtadaei, M., Soltanizadeh, N., & Goli, S. A. H. (2018). Production of sesame oil oleogels based on beeswax and application as partial substitutes of animal fat in beef burger. Food Research International, 108, 368–377.

    Article  CAS  PubMed  Google Scholar 

  • Nagle, N., & Lemke, P. (1990). Production of methyl ester fuel from microalgae. Applied Biochemistry and Biotechnology, 24, 355–361.

    Article  Google Scholar 

  • O'Brien R. D. (2008). Fats and Oils Formulation. In Fats and Oils: Formulating and Processing for Applications (pp. 263 - 346), 3rd edn. CRC Press.

  • Öğütcü, M., & Yılmaz, E. (2014). Oleogels of virgin olive oil with carnauba wax and monoglyceride as spreadable products. Grasas y Aceites, 65(3), e040. https://doi.org/10.3989/gya.0349141.

    Article  CAS  Google Scholar 

  • Paggiola, G., Hunt, A. J., McElroy, C. R., Sherwood, J., & Clark, J. H. (2014). Biocatalysis in bio-derived solvents: an improved approach for medium optimization. Green Chemistry, 16(4), 2107–2110. https://doi.org/10.1039/C3GC42526F.

    Article  CAS  Google Scholar 

  • Papadaki, A., Papapostolou, H., Alexandri, M., Kopsahelis, N., Papanikolaou, S., de Castro, A. M., et al. (2018). Fumaric acid production using renewable resources from biodiesel and cane sugar production processes. Environmental Science and Pollution Research, 25(36), 35960–35970. https://doi.org/10.1007/s11356-018-1791-y.

    Article  CAS  PubMed  Google Scholar 

  • Papadaki, A., Mallouchos, A., Efthymiou, M.-N., Gardeli, C., Kopsahelis, N., Aguieiras, E. C. G., Freire, D. M. G., Papanikolaou, S., & Koutinas, A. A. (2017). Production of wax esters via microbial oil synthesis from food industry waste and by-product streams. Bioresource Technology, 245(Part A), 274–282.

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou, S., Kampissopoulou, E., Blanchard, F., Rondags, E., Gardeli, C., Koutinas, A. A., et al. (2017). Production of secondary metabolites through glycerol fermentation under carbon-excess conditions by the yeasts Yarrowia lipolytica and Rhodosporidium toruloides. European Journal of Lipid Science and Technology, 119(9). https://doi.org/10.1002/ejlt.201600507.

  • Patel, A. R., Schatteman, D., De Vos, W. H., Lesaffer, A., & Dewettinck, K. (2013). Preparation and rheological characterization of shellac oleogels and oleogel-based emulsions. Journal of Colloid and Interface Science, 411, 114–121.

    Article  CAS  PubMed  Google Scholar 

  • Phuah, E.-T., Beh, B.-K., Lim, C. S.-Y., Tang, T.-K., Lee, Y.-Y., & Lai, O.-M. (2016). Rheological properties, textural properties, and storage stability of palm kernel-based diacylglycerolenriched mayonnaise. European Journal of Lipid Science and Technology, 118(2), 185–194.

    Article  CAS  Google Scholar 

  • Polburee, P., Yongmanitchai, W., Honda, K., Ohashi, T., Yoshida, T., Fujiyama, K., & Limtong, S. (2016). Lipid production from biodiesel-derived crude glycerol by Rhodosporidium fluviale DMKU-RK253 using temperature shift with high cell density. Biochemical Engineering Journal, 112, 208–218.

    Article  CAS  Google Scholar 

  • Robert, J. M., Lattari, F. S., Machado, A. C., de Castro, A. M., Almeida, R. V., Torres, F. A. G., Valero, F., & Freire, D. M. G. (2017). Production of recombinant lipase B from Candida antarctica in Pichia pastoris under control of the promoter PGK using crude glycerol from biodiesel production as carbon source. Biochemical Engineering Journal, 118, 123–131.

    Article  CAS  Google Scholar 

  • Ruguo, Z., Hua, Z., Hong, Z., Ying, F., Kun, L., & Wenwen, Z. (2011). Thermal analysis of four insect waxes based on differential scanning calorimetry (DSC). Procedia Engineering, 18, 101–106.

    Article  CAS  Google Scholar 

  • Sharma, B. K. (1991). Oils, Fats, Waxes and Soaps. In Industrial Chemistry (p. 1234). Krishna: Prakashan Media (Ltd).

    Google Scholar 

  • Si, H., Cheong, L.-Z., Huang, J., Wang, X., & Zhang, H. (2016). Physical properties of soybean oleogels and oil migration evaluation in model praline system. Journal of the American Oil Chemists' Society, 93(8), 1075–1084.

    Article  CAS  Google Scholar 

  • Petrik, S., Obruča, S., Benešová, P., & Márová, I. (2014). Bioconversion of spent coffee grounds into carotenoids and other valuable metabolites by selected red yeast strains. Biochemical Engineering Journal, 90, 307–315.

    Article  CAS  Google Scholar 

  • Soares, D., Pinto, A. F., Gonçalves, A. G., Mitchell, D. A., & Krieger, N. (2013). Biodiesel production from soybean soapstock acid oil by hydrolysis in subcritical water followed by lipase-catalyzed esterification using lipase-catalyzed esterification using a fermented solid in a packed-bed reactor. Biochemical Engineering Journal, 81, 15–23.

    Article  CAS  Google Scholar 

  • Sousa, J. S., Cavalcanti-Oliveira, E. D., Aranda, D. A. G., & Freire, D. M. G. (2010). Application of lipase from the physic nut (Jatropha curcas L.) to a new hybrid (enzyme/chemical) hydroesterification process for biodiesel production. Journal of Molecular Catalysis B: Enzymatic, 65(1-4), 133–137.

    Article  CAS  Google Scholar 

  • Talukder, M. M. R., Wu, J. C., Nguyen, T. B. V., Fen, N. M., & Melissa, Y. L. S. (2009). Novozym 435 for production of biodiesel from unrefined palm oil: comparison of methanolysis methods. Journal of Molecular Catalysis B: Enzymatic, 60(3-4), 106–112.

    Article  CAS  Google Scholar 

  • Tavernier, I., Doan, C. D., de Walle, D. V., Danthine, S., Rimaux, T., & Dewettinck, K. (2017). Sequential crystallization of high and low melting waxes to improve oil structuring in wax-based oleogels. RCS Advances, 7, 12113.

    CAS  Google Scholar 

  • Tsakona, S., Kopsahelis, N., Chatzifragkou, A., Papanikolaou, S., Kookos, I. K., & Koutinas, A. A. (2014). Formulation of fermentation media from flour-rich waste streams for microbial lipid production by Lipomyces starkeyi. Journal of Biotechnology, 189, 36–45.

    Article  CAS  PubMed  Google Scholar 

  • Tsakona, S., Skiadaresis, A. G., Kopsahelis, N., Chatzifragkou, A., Papanikolaou, S., Kookos, I. K., & Koutinas, A. A. (2016). Valorisation of side streams from wheat milling and confectionery industries for consolidated production and extraction of microbial lipids. Food Chemistry, 198, 85–92.

    Article  CAS  PubMed  Google Scholar 

  • Treichel, H., de Oliveira, D., Mazutti, M. A., Luccio, M. D., & Oliveira, J. V. (2010). A review on microbial lipases production. Food and Bioprocess Technology, 3(2), 182–196.

    Article  CAS  Google Scholar 

  • U.S. Pharmacopeia (2006). United States Pharmacopeia/National Formulary (USP/NF) 29. United States Pharmacopeial Convention

  • WHO/FAO. (2007). Standard for fat spreads and blended spreads. In CODEX STAN 256. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Xu, J., Zhao, X., Wang, W., Du, W., & Liu, D. (2012). Microbial conversion of biodiesel byproduct glycerol to triacylglycerols by oleaginous yeast Rhodosporidium toruloides and the individual effect of some impurities on lipid production. Biochemical Engineering Journal, 65, 30–36.

    Article  CAS  Google Scholar 

  • Yilmaz, E., & Öğütcü, M. (2015). Oleogels as spreadable fat and butter alternatives: sensory description and consumer perception. RCS Advances, 5, 50259–50267.

    CAS  Google Scholar 

  • Zulim Botega, D. C., Marangoni, A. G., Smith, A. K., & Goff, H. D. (2013). The potential application of rice bran wax oleogel to replace solid fat and enhance unsaturated fat content in ice cream. Journal of Food Science, 78(9), C1334–C1339. https://doi.org/10.1111/1750-3841.12175.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Julia de Macedo Robert from the Biochemistry Department in the Federal University of Rio de Janeiro (Brazil) for the contribution in LipB enzyme production, Dr Georgios Liakopoulos from the Department of Crop Science in the Agricultural University of Athens (Greece) for using the polarized light microscopy, Dr Athanasios Mallouchos, Mr. Emmanouil Anagnostaras, and the MSc student Mrs. Ioulia Chrysikou from the Department of Food Science and Human Nutrition in the Agricultural University of Athens for their contribution in the analysis of wax esters and oleogels. The authors also thank the Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro (FAPERJ) (Processo 202.713/16) for scholarship provision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apostolis A. Koutinas.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papadaki, A., Cipolatti, E.P., Aguieiras, E.C.G. et al. Development of Microbial Oil Wax-Based Oleogel with Potential Application in Food Formulations. Food Bioprocess Technol 12, 899–909 (2019). https://doi.org/10.1007/s11947-019-02257-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02257-3

Keywords

Navigation