Skip to main content

Fats, Oils and Emulsifiers

  • Chapter
  • First Online:
Confectionery Science and Technology

Abstract

Various definitions have been offered to define lipids, although the terms fat, oil and lipid are often used interchangeably in the food industry to denote a certain type of molecular structure. In general, lipids are molecules that contain a significant proportion of aliphatic or aromatic hydrocarbons . Lipids may also be defined as the various soft or semi-solid organic compounds comprising the glyceride esters of fatty acids and associated compounds such as hydrocarbons or substituted hydrocarbons (fatty acids, waxes, soaps, detergents, emulsifiers), acylglycerol s (mono-, di- and triacylglycerols), glycerophospholipids (e.g., lecithin), sterols (e.g., cholesterol), and oil-soluble vitamins (A, D, E and K).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CMC:

Critical micelle concentration

DAG:

Diacylglycerol, or diglyceride

DSC:

Differential scanning calorimeter

FFA:

Free fatty acid

HLB:

Hydrophilic-lipophilic balance

MAG:

Monoacylglycerol, or monoglyceride

NMR:

Nuclear magnetic resonance

PGPR:

Polyglycerol polyricinoleate

SFC:

Solid fat content

SFI:

Solid fat index

TAG:

Triacylglycerol, or triglyceride

References

  • AOCS. The official methods and recommended practices of the American Oil Chemists Society. 4th ed. Champaign: AOCS Press; 1994.

    Google Scholar 

  • Berry SE. Triacylglycerol structure and interesterification of palmitic and stearic acid-rich fats: an overview and implications for cardiovascular disease. Nutr Res Rev. 2009;22(1):3–17.

    Article  CAS  Google Scholar 

  • Bigalli, G.L., Practical aspects of the eutectic effect on confectionery fats and their mixtures. Manuf Confect. 68(5):65–68, 79–80 (1988).

    Google Scholar 

  • Bockisch M. Fats and oils handbook. Champaign: AOCS Press; 1998.

    Google Scholar 

  • D’Souza V, de Man JM, de Man L. Short spacings and polymorphic forms of natural and commercial solid fats: a review. J Am Oil Chem Soc. 1990;67(11):835–43.

    Article  Google Scholar 

  • Davis TR, Dimick PS. Lipid composition of high-melting seed crystals formed during cocoa butter solidification. J Am Oil Chem Soc. 1989;66(10):1494–8.

    Article  CAS  Google Scholar 

  • Deffense E, Hartel RW. Fractionation of butter fat. In:Oils and fats handbook series, vol. 3. Surrey: Leatherhead Food RA; 2003. p. 158–86.

    Google Scholar 

  • Garti N, Yano J. The role of emulsifiers in fat crystallization. In: Garti N, Sato K, editors. Crystallization processes in fats and lipid systems. New York: Marcel Dekker; 2001. p. 211–50.

    Google Scholar 

  • Gresti J, Bugaut M, Maniongui C, Bezard J. Composition of molecular species of triacylglycerols in bovine milk fat. J Dairy Sci. 1993;76:1850–69.

    Article  CAS  Google Scholar 

  • Hageman JW. Thermal behavior and polymorphism of acylglycerides. In: Garti N, Sato K, editors. Crystallization and polymorphism of fats and fatty acids. New York: Marcel Dekker; 1988. p. 9–95.

    Google Scholar 

  • Hartel RW. Crystallization in foods. New York: Aspen; 2001.

    Google Scholar 

  • Hartel RW, Kaylegian KE. Advances in milk fat fractionation: technology and applications. In: Garti N, Sato K, editors. Crystallization processes in fats and lipid systems. New York: Marcel Dekker; 2001. p. 329–55.

    Google Scholar 

  • Hasenhuettl GL, Hartel RW. Food emulsifiers and their applications. 2nd ed. New York: Springer Publ; 2008.

    Book  Google Scholar 

  • Hernqvist L. Crystal structures of fats and fatty acids. In: Garti N, Sato K, editors. Crystallization and polymorphism of fats and fatty acids. New York: Marcel Dekker; 1988. p. 97–137.

    Google Scholar 

  • Herrera ML, de Leon Gatti M, Hartel RW. A kinetic analysis of crystallization of a milk fat model system. Food Res Int. 1999;9:231–40.

    Google Scholar 

  • Hicklin JD, Jewell GG, Heathcock JF. Combining microscopy and physical techniques in the study of cocoa butter polymorphs and vegetable fat blends. Food Microstruct. 1985;4:241–8.

    Google Scholar 

  • Himawan C, Starov VM, Stapley AGF. Thermodynamic and kinetic aspects of fat crystallization. Adv Colloid Interf Sci. 2006;122:3–33.

    Article  CAS  Google Scholar 

  • Hogenbirk G. Saponification of fats. Manuf Confect. 1987;67(5):59–64.

    Google Scholar 

  • Hogenbirk G. The influence of milk fat on the crystallization properties of cocoa butter and cocoa butter alternatives. Manuf Confect. 1990;70:133–40.

    Google Scholar 

  • Laning SJ. Chemical interesterification of palm, palm kernel and coconut oils. J Am Oil Chem Soc. 1985;62(2):400–7.

    Article  CAS  Google Scholar 

  • Lipp M, Anklam E. Review of cocoa butter and alternative fats for use in chocolate – part A. Compositional data. Food Chem. 1998a;62(1):73–97.

    Article  CAS  Google Scholar 

  • Lipp M, Anklam E. Review of cocoa butter and alternative fats for use in chocolate – part B. Analytical approaches for identification and determination. Food Chem. 1998b;62(1):99–108.

    Article  CAS  Google Scholar 

  • Lipp M, Simoneau C, Ulberth F, Anklam E, Crews C, Brereton P, de Greyt W, Schwack W, Wiedmaier C. Composition of genuine cocoa butter and cocoa butter equivalents. J Food Compos Anal. 2001;14:399–408.

    Article  CAS  Google Scholar 

  • List GR, Mounts TL, Orthoefer F, Neff WE. Effect of interesterification on the structure and physical properties of high-stearic acid soybean oils, J. J Am Oil Chem Soc. 1997;74(3):327–9.

    Article  Google Scholar 

  • Liu K-J, Chang H-M, Liu K-M. Enzymatic synthesis of cocoa butter analog through interesterification of lard and tristearin in supercritical carbon dioxide in lipase. Food Chem. 2007;100:1303–11.

    Article  CAS  Google Scholar 

  • Loisel C, Keller G, Lecq G, Bourgaux C, Ollivon M. Phase transitions and polymorphism of cocoa butter. J Am Oil Chem Soc. 1998;75(4):425–39.

    Article  CAS  Google Scholar 

  • Martini S, Herrera ML. X-ray diffraction and crystal size. J Am Oil Chem Soc. 2002;79(3):315–6.

    Article  CAS  Google Scholar 

  • McClements DJ. Food emulsions. 2nd ed. Boca Raton: CRC Press; 2005.

    Google Scholar 

  • Metin S, Hartel RW. Thermal analysis of isothermal crystallization kinetics in blends of cocoa butter with milk fat or milk fat fractions. J Am Oil Chem Soc. 1998;75(11):1617–24.

    Article  CAS  Google Scholar 

  • Minifie BW. Chocolate, cocoa and confectionery. 3rd ed. New York: Van Nostrand Reinhold; 1989.

    Book  Google Scholar 

  • Mugendi JB, Sims CA, Gorbet DW, O’Keefe SF. Flavor stability of high-oleic peanuts stored at low humidity. J Am Oil Chem Soc. 1998;75(1):21–5.

    Article  CAS  Google Scholar 

  • O’Brien RD. Fats and oils. Lancaster: Technomic Publ; 1998.

    Google Scholar 

  • Padley FB. The control of rancidity in confectionery products. In: Allen JC, Hamilton RC, editors. Rancidity in foods. 3rd ed. New York: Aspen; 1994. p. 230–55.

    Google Scholar 

  • Patience D, Hartel RW, Illingworth D. Crystallization and pressure filtration of anhydrous milk fat: mixing effects. J Am Oil Chem Soc. 1999;76(5):585–94.

    Article  CAS  Google Scholar 

  • Rozendaal A, Macrae AR. Interesterification of oils and fats. In: Gunstone FD, Padley FB, editors. Lipid technologies and applications. New York: Marcel Dekker; 1997. p. 223–64.

    Google Scholar 

  • Sanders TAB, Berry SEE, Miller GJ. Influence of triacylglycerol structure on the postprandial response of factor VII to stearic-rich fats. Am J Clin Nutr. 2003;77:777–82.

    CAS  Google Scholar 

  • Sato K, Ueno S, Yano J. Molecular interactions and kinetic properties of fats. Prog Lipid Res. 1999;38:91–116.

    Article  CAS  Google Scholar 

  • Sato K. Crystallization behaviour of fats and lipids - a review. Chem Eng Sci. 2001;56:2255–65.

    Google Scholar 

  • Schmelzer J, Hartel RW. Interactions of milk fat and milk fat fractions with confectionery fats. J Dairy Sci. 2001;84:332–44.

    Article  CAS  Google Scholar 

  • Smith KW, Bhaggan K, Talbot G, van Malssen KF. Crystallization of fats: Influence of minor components and additives. J Amer Oil Chem Soc. 2011;88:1085–1101.

    Google Scholar 

  • Talbot G. Chocolate temper. In: Beckett ST, editor. Industrial chocolate manufacturing and use. 4th ed. Oxford: Wiley-Blackwell; 2009. p. 261–75.

    Google Scholar 

  • Tietz RA, Hartel RW. Crystallization and microstructure of milk fat cocoa butter blends related to bloom formation in chocolate. J Am Oil Chem Soc. 2000;77(7):763–72.

    Article  CAS  Google Scholar 

  • Timms RE. Computer program to construct isosolid diagrams for fat blends. Chem Ind. 1979;7:257–8.

    Google Scholar 

  • Timms RE. The phase behaviour and polymorphism of milk fat, milk fat fractions and fully hardened milk fat. Aust J Dairy Technol. 1980;35(2):47–53.

    CAS  Google Scholar 

  • Timms RE. Confectionery fats. Bridgwater: The Oily Press; 2003.

    Book  Google Scholar 

  • Ueno A, Minato A, Yano J, Sato K. Synchrotron radiation x-ray diffraction study of polymorphic crystallization of SOS from liquid phase. J Cryst Growth. 1999;198/199:1326–9.

    Article  CAS  Google Scholar 

  • Van Malssen K, van Langevelde A, Peschar R, Schenk H. Phase behavior and extended phase scheme of static cocoa butter investigated with real-time x-ray powder diffraction, J. J Am Oil Chem Soc. 1999;76(6):669–76.

    Article  Google Scholar 

  • Walstra P, Kloek W, van Vliet T. Fat crystal networks. In: Sato K, Garti N, editors. Crystallization processes in fats and lipid systems. New York: Marcel Dekker; 2001. p. 289–328.

    Google Scholar 

  • Ward TL, Gros AT, Feuge RO. Solubility of tristearin and hydrogenated cottonseed oil in certain aceto- and butyroglycerides. J Am Oil Chem Soc. 1955;32:316–8.

    Article  CAS  Google Scholar 

  • Weyland, M., Hartel, R.W., Emulsifiers in confections. In: Food emulsifiers and their applications. 2nd. NY: Springer Publ; 2008. pp. 285–305.

    Google Scholar 

  • Wille R, Lutton E. Polymorphism of cocoa butter. J Am Oil Chem Soc. 1966;43:491–6.

    Google Scholar 

  • Windhab EJ. Tempering. In: Beckett ST, editor. Industrial chocolate manufacturing and use. 4th ed. Oxford: Wiley-Blackwell; 2009. p. 276–319.

    Google Scholar 

  • Wu Y, Wang T. Soybean lecithing fractionation and functionality. J Amer Oil Chem Soc. 2003;80:319–26.

    Google Scholar 

  • Zhou Y, Hartel RW. Phase behavior of model lipid systems: solubility of high-melting fats in low-melting fats, J. J Am Oil Chem Soc. 2006;83(6):505–11.

    Article  CAS  Google Scholar 

  • Acevedo NC, Marangoni AG. Nanostructured fat crystal systems. Annual Review of Food Science and Technology. 2015;6:71–96.

    Google Scholar 

Download references

Acknowledgments

Thanks to Adam Lechter (Clasen Quality Chocolate) and Ed Seguine for comments on this chapter.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Hartel, R.W., von Elbe, J.H., Hofberger, R. (2018). Fats, Oils and Emulsifiers. In: Confectionery Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-61742-8_4

Download citation

Publish with us

Policies and ethics