Skip to main content
Log in

Utilisation of By-Products from Sunflower-Based Biodiesel Production Processes for the Production of Fermentation Feedstock

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

By-products streams from a sunflower-based biodiesel plant were utilised for the production of fermentation media that can be used for the production of polyhydroxyalkanoates (PHA). Sunflower meal was utilised as substrate for the production of crude enzyme consortia through solid state fermentation (SSF) with the fungal strain Aspergillus oryzae. Fermented solids were subsequently mixed with unprocessed sunflower meal aiming at the production of a nutrient-rich fermentation feedstock. The highest free amino nitrogen (FAN) and inorganic phosphorus concentrations achieved were 1.5 g L−1 and 246 mg L−1, respectively, when an initial proteolytic activity of 6.4 U mL−1 was used. The FAN concentration was increased to 2.3 g L−1 when the initial proteolytic activity was increased to 16 U mL−1. Sunflower meal hydrolysates were mixed with crude glycerol to provide fermentation media that were evaluated for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)) using Cupriavidus necator DSM 545. The P(3HB-co-3HV) (9.9 g l−1) produced contained 3HB and 3HV units with 97 and 3 mol %, respectively. Integrating PHA production in existing 1st generation biodiesel production plants through valorisation of by-product streams could improve their sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lamers, P.: International biodiesel markets. Developments in production and trade. Published http://www.ecofys.com/en/publication/international-biodiesel-markets/ (2012)

  2. Krawczyk, T.: Biodiesel—alternative fuel makes inroads but hurdles remain. INFORM 7, 801–829 (1996)

    Google Scholar 

  3. Ma, F., Hanna, M.A.: Biodiesel production: a review. Bioresour. Technol. 70, 1–15 (1999)

    Article  Google Scholar 

  4. Dorado, M.P., Ballesteros, E., Arnal, J.M., Gómez, J., López-Giménez, F.J.: Testing waste olive oil methyl ester as a fuel in a diesel engine. Energ. Fuel 17(6), 1560–1565 (2003)

    Article  Google Scholar 

  5. Panoutsou, C., Namatov, I., Lychnaras, V., Nikolaou, A.: Biodiesel options in Greece. Biomass Bioenerg. 32, 473–481 (2008)

    Article  Google Scholar 

  6. United States Department of Agriculture. Foreign Agricultural Service. Production, Supply and Distribution Online. Accessed 21 Sep 2012. http://www.fas.usda.gov/psdonline/psdquery.aspx

  7. Papanikolaou, S., Muniglia, L., Aggelis, G., Marc, I.: Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. J. Appl. Microbiol. 92(4), 737–744 (2002)

    Article  Google Scholar 

  8. Da Silva, G.P., Mack, M., Contiero, J.: Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 27, 30–39 (2009)

    Article  Google Scholar 

  9. Chatzifragkou, A., Papanikolaou, S., Dietz, D., Doulgeraki, A.I., Nychas, G.J., Zeng, A.P.: Production of 1,3-propanediol by Clostridium butyricum growing on biodiesel-derived crude glycerol through a non-sterilised fermentation process. Appl. Microbiol. Biotechnol. 91(1), 101–112 (2011)

    Article  Google Scholar 

  10. Lee, P.C., Lee, W.G., Chang, H.N.: Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnol. Bioenerg. 72(1), 41–48 (2001)

    Article  Google Scholar 

  11. Ito, T., Nakashimada, Y., Senba, K., Matsui, T., Nishio, N.: Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J. Biosci. Bioeng. 100(3), 260–265 (2005)

    Article  Google Scholar 

  12. Ashby, R.D., Solaiman, D.K.Y., Foglia, T.A.: Bacterial poly(hydroxyalkanoate) polymer production from the biodiesel co-product stream. J. Polym. Environ. 12(3), 105–112 (2004)

    Article  Google Scholar 

  13. Solaiman, D.K.Y., Ashby, R.D., Foglia, T.A., Marmer, W.N.: Conversion of agricultural feedstock and co-products into poly(hydroxyalkanoates). Appl. Microbiol. Biotechnol. 71, 783–789 (2006)

    Article  Google Scholar 

  14. National Sunflower Association. Meal/Wholeseed feeding. Accessed 19 Sep 2012. http://www.sunflowernsa.com/wholeseed/sunflower-as-a-feed/

  15. Lomascolo, A., Uzan-Boukhris, E., Sigoillot, J.C., Fine, F.: Rapeseed and sunflower meal: a review on biotechnology status and challenges. Appl. Microbiol. Biotechnol. (2012). doi:10.1007/s00253-012-4250-6

    Google Scholar 

  16. Sircar, A., Sridhar, P., Das, P.K.: Optimization of solid state medium for the production of clavulanic acid by Streptomyces clavuligerus. Process Biochem. 33(3), 283–289 (1998)

    Article  Google Scholar 

  17. Sarada, I., Sridhar, P.: Nutritional improvement for cephamycin C fermentation using a superior strain of Streptomyces clavuligerus. Process Biochem. 33(3), 317–322 (1998)

    Article  Google Scholar 

  18. Jacobs, A., Botha, A., Reddy, J.K., Van Zyl, W.H.: Sunflower press cake as a substrate for eicosipentaenoic acid production by representatives of the genus Mortierella. Bioresources 5(2), 1232–1243 (2010)

    Google Scholar 

  19. Jadhav, M., Kagalkar, A., Jadhav, S., Govindwar, S.: Isolation, characterization, and antifungal application of a biosurfactant produced by Enterobacter sp. MS16. Eur. J. Lipid Sci. Tech. 113(11), 1347–1356 (2011)

    Article  Google Scholar 

  20. Rajoka, M.I., Huma, T., Khalid, A.M., Latif, F.: Kinetics of enhanced substrate consumption and endo-β-xylanase production by a mutant derivative of Humicola lanuginose in solid-state-fermentation. World J. Microb. Biot. 21(6–7), 869–876 (2005)

    Article  Google Scholar 

  21. Ashby, R., Solaiman, D.K.Y., Strahan, G.D.: Efficient utilization of crude glycerol as fermentation substrate in the synthesis of poly(3-hydroxybutyrate) biopolymers. J. Am. Oil Chem. Soc. 88(7), 949–959 (2011)

    Article  Google Scholar 

  22. Cavalheiro, J.M.B.T., de Almeida, M.C.M.D., Grandfils, C., da Fonseca, M.M.R.: Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Proc. Biochem. 44(5), 509–515 (2009)

    Article  Google Scholar 

  23. Cavalheiro, J.M.B.T., Raposo, R.S., de Almeida, M.C.M.D., Cesário, M.T., Sevrin, C., Grandfils, C., da Fonseca, M.M.R.: Effect of cultivation parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Bioresour. Technol. 111, 391–397 (2012)

    Article  Google Scholar 

  24. Mothes, G., Schnorpfeil, C., Ackermann, J.-U.: Production of PHB from crude glycerol. Eng. Life Sci. 7, 475–479 (2007)

    Article  Google Scholar 

  25. Wang, R., Law, R.C.S., Webb, C.: Protease production and conidiation by Aspergillus oryzae in flour fermentation. Proc. Biochem. 40, 217–227 (2005)

    Article  Google Scholar 

  26. American Association of Cereal Chemists Inc (AACC): Approved Methods of the American Association of Cereal Chemists. 8th ed., St. Paul, MN, USA (1983)

  27. Riis, V., Mai, W.: Gas chromatographic determination of poly-b-hydroxybutyric acid in microbial biomass after hydrochloric acid propanolysis. J. Chromatogr. A445, 285–289 (1988)

    Google Scholar 

  28. Lie, S.: The EBC-ninhydrin method for determination of free alpha amino nitrogen. J. Inst. Brew. 79, 37–41 (1973)

    Article  Google Scholar 

  29. Harland, B.F., Harland, J.: Fermentative reduction of phytate in rye, white and whole wheat breads. Cereal Chem. 57, 226–229 (1980)

    Google Scholar 

  30. Parrado, J., Millan, F., Hernandez-Pinzh, I., Bautista, J., Machado, A.: Characterization of enzymatic sunflower protein hydrolysates. J. Agric. Food Chem. 41, 1821–1825 (1993)

    Article  Google Scholar 

  31. Bautista, J., Parrado, J., Machado, A.: Composition and fractionation of sunflower meal: use of the lignocellulosic fraction as substrate in solid state fermentation. Biol. Waste 32(3), 225–233 (1990)

    Article  Google Scholar 

  32. Salunkhe, D.K., Chavan, J.K., Adsule, R.N., Kadam, S.S.: Sunflower. In: Salunkhe, D.K., Adsule, R.N., Chavan, J.K., Kadam, S.S. (eds.) World Oilseeds: Chemistry, Technology and Utilization, pp. 97–139. Van Nostrand Reinhold, New York (1992)

    Google Scholar 

  33. Gassmann, B.: Preparation and application of vegetable proteins, especially proteins from sunflower seed, for human consumption. App. Die Nahrung 27, 351–369 (1983)

    Article  Google Scholar 

  34. Bhatty, R.S., Sosulski, F.W., Wu, K.K.: Protein and nonprotein nitrogen contents of some oilseeds and peas. Can. J. Plant Sci. 53, 651–657 (1973)

    Article  Google Scholar 

  35. Villanueva, A., Vioque, J., Sánchez-Vioque, R., Clemente, A., Bautista, J., Millán, F.: Production of an extensive sunflower protein hydrolysate by sequential hydrolysis with endo- and exo-proteases. Grasas Aceites 50(6), 472–476 (1999)

    Article  Google Scholar 

  36. Kiran, E.U., Salakkam, A., Trzcinski, A.P., Bakir, U., Webb, C.: Enhancing the value of nitrogen from rapeseed meal for microbial oil production. Enz. Microb. Technol. 50, 337–342 (2012)

    Article  Google Scholar 

  37. Wang, R., Shaarani, S., Md Godoy, L.C., Melikoglu, M., Vergara, C.S., Koutinas, A., Webb, C.: Bioconversion of rapeseed meal for the production of a generic microbial feedstock. Enz. Microb. Technol. 47, 77–83 (2010)

    Article  Google Scholar 

  38. Whitaker, J.R.: Enzyme-catalyzed reactions experimental factors that affect rates. In: Whitaker, J.R., Voragen, A.G.J., Wong, D.W.S. (eds.) Handbook of Food Enzymology, pp. 43–48. Marcel Dekker Inc., New York (2000)

    Google Scholar 

  39. Wang, R., Godoy, L.C., Shaarani, S., Melikoglu, M., Koutinas, A., Webb, C.: Improving wheat flour hydrolysis by an enzyme mixture from solid state fungal fermentation. Enz. Microb. Technol. 44, 223–228 (2009)

    Article  Google Scholar 

  40. Koutinas, A., Wang, R.H., Webb, C.: Development of a process for the production of nutrient supplements for fermentations based on fungal autolysis. Enz. Microb. Technol. 36, 629–638 (2005)

    Article  Google Scholar 

  41. Koutinas, A.A., Xu, Y., Wang, R., Webb, C.: Polyhydroxybutyrate production from a novel feedstock derived from a wheat-based biorefinery. Enz. Microb. Technol. 40, 1035–1044 (2007)

    Article  Google Scholar 

  42. Xu, Y., Wang, R.H., Koutinas, A., Webb, C.: Microbial biodegradable plastic production from a wheat-based biorefining strategy. Proc. Biochem. 45, 153–163 (2010)

    Article  Google Scholar 

  43. Steinbüchel, A., Lütke-Eversloh, T.: Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanaotes in microorganisms. Biochem. Eng. J. 16, 81–96 (2003)

    Article  Google Scholar 

  44. Geneau-Sbartai, C., Leyris, J., Silvestre, F., Rigal, L.: Sunflower cake as a natural composite: composition and plastic properties. J. Agric. Food Chem. 56, 11198–11208 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work is part of the “BIOREF” project (09SYN-81-715), implemented within the National Strategic Reference Framework (NSRF) 2007–2013 and co-financed by National (Greek Ministry—General Secretariat of Research and Technology) and Community Funds (E.U.-European Social Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apostolis A. Koutinas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kachrimanidou, V., Kopsahelis, N., Chatzifragkou, A. et al. Utilisation of By-Products from Sunflower-Based Biodiesel Production Processes for the Production of Fermentation Feedstock. Waste Biomass Valor 4, 529–537 (2013). https://doi.org/10.1007/s12649-012-9191-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-012-9191-x

Keywords

Navigation