Skip to main content
Log in

Experimental and Mathematical Assessment of Migration from Multilayer Food Packaging Containing a Novel Clay/Polymer Nanocomposite

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

A novel clay/polymer composite film was prepared by applying a modified clay polymer suspension containing montmorillonite nanoparticles onto bi-axially oriented polypropylene films to form three-layer barrier film via lamination. The suitability of the film to be used as a food contact material was assessed with a focus on two-side migration into specified food simulants (water, 3 % acetic acid, 15 % ethanol, olive oil, grapeseed oil and coconut oil) under three different temperatures. It was found that migration levels increased with increasing contact time and temperature. Among the aqueous food simulants tested, the 3 % acetic acid solution demonstrated the highest migration levels, while the water was the least efficient migrating medium. Migration into fatty simulants was observed to be greater than those into aqueous solutions, but independent of their fatty acid composition. The results provided adequate guarantees for the developed film to be applied for food packaging materials. A numerical model based on Fick’s diffusion theory was developed to predict the extent of migration from the multilayer film at any time of exposure in aqueous simulants. Measurements of migration were combined with computer simulations to yield reliable estimates of the diffusion and partition coefficients in the system, which showed an Arrhenius behaviour. The model was solved using a finite element method, and the predicted results and experimental data agreed very well, indicating the rate-controlling steps of diffusion within the polymer in the migration process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A :

Contact area of migration, m2

a :

Constant in Eq. 11, −

C :

Concentration of silicon, kg m−3

C 0 :

Initial concentration of silicon in nanocomposite, kg m−3

D :

Diffusion coefficient of silicon, m2 s−1

D 0 :

Theoretical maximum diffusion coefficient, m2 s−1

E a :

Activation energy, J mol−1

H :

Enthalpy of sorption, J mol−1

K :

Partition coefficient of silicon, −

L :

Layer thickness, m

R :

Universal gas constant, J mol−1 K−1

T :

Absolute temperature, K

t :

Migration time, h

V :

Volume, m3

x :

Distance from centre of film along direction of diffusion, m

a:

Deionised water

b:

3 % w/v acetic acid solution

c:

15 % v/v ethanol solution

eq.:

Equilibrium state

l:

Simulant

n:

Nanocomposite (core) layer

n/2:

Half-thickness of nanocomposite layer

np:

Nanocomposite-PP interface

p:

PP layer

pa:

PP-water interface

pb:

PP-3 % acetic acid interface

pc:

PP-15 % ethanol interface

pl:

PP-simulant interface

References

  • Arora, A., & Padua, G. W. (2010). Review: nanocomposites in food packaging. Journal of Food Science, 75(1), R43–R49.

    Article  CAS  Google Scholar 

  • Avella, M., De Vlieger, J. J., Errico, M. E., Fischer, S., Vacca, P., & Volpe, M. G. (2005). Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chemistry, 93(3), 467–474.

    Article  CAS  Google Scholar 

  • Bharadwaj, P. S. (2012). Silver or silver nanoparticle a safety or a risk. Journal of Environmental Research and Development, 7(1A), 452–456.

    Google Scholar 

  • Bradley, E. L., Castle, L., & Chaudhry, Q. (2011). Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends in Food Science & Technology, 22(11), 604–610.

    Article  CAS  Google Scholar 

  • Brandsch, J., Mercea, P., Rüter, M., Tosa, V., & Piringer, O. (2002). Migration modelling as a tool for quality assurance of food packaging. Food Additives & Contaminants, 19(sup1), 29–41.

    Article  CAS  Google Scholar 

  • Crank, J. (1975). The mathematics of diffusion. Oxford: Clarendon.

    Google Scholar 

  • Dänicke, S. (2000). Interaction between cereal identity and fat quality and content in response to feed enzymes in broilers. In M. R. Bedford & G. G. Partridge (Eds.), Enzymes in Farm Animal Nutrition (pp. 199–236). Wallingford: CAB International.

    Chapter  Google Scholar 

  • Djilani, S.-E., Bouchami, T., Krid, F., Boudiaf, N., & Messadi, D. (2000). Comparison des simulations chimique et mathematique de la migration do DOP a partir de disques de PVC plastfie plonges dans des huiles comestibles. European Polymer Journal, 36, 1981–1987.

    Article  CAS  Google Scholar 

  • Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1–24.

    Article  CAS  Google Scholar 

  • Echegoyen, Y., & Nerín, C. (2013). Nanoparticle release from nano-silver antimicrobial food containers. Food and Chemical Toxicology, 62, 16–22.

    Article  CAS  Google Scholar 

  • European Committee for Standardisation (1993). CEN EN 1186–2 Materials and articles in contact with foodstuffs - plastics — part 2: test methods for overall migration into olive oil by total immersion.

  • Farhoodi, M., Mousavi, S. M., Sotudeh-Gharebagh, R., Emam-Djomeh, Z., & Oromiehie, A. (2014). Migration of aluminum and silicon from PET/clay nanocomposite bottles into acidic food simulant. Packaging Technology and Science, 27(2), 161–168.

    Article  CAS  Google Scholar 

  • Franz, R., & Brandsch, R. (2013). Migration of acrylic monomers from methacrylate polymers—establishing parameters for migration modelling. Packaging Technology and Science, 26(8), 435–451.

    Article  CAS  Google Scholar 

  • Garde, J. A., Catalá, R., & Gavara, R. (1998). Global and specific migration of antioxidants from polypropylene films into food simulants. Journal of Food Protection, 61(8), 1000–1006.

    CAS  Google Scholar 

  • Granda-Restrepo, D. M., Soto-Valdez, H., Peralta, E., Troncoso-Rojas, R., Vallejo-Córdoba, B., Gámez-Meza, N., & Graciano-Verdugo, A. Z. (2009). Migration of α-tocopherol from an active multilayer film into whole milk powder. Food Research International, 42(10), 1396–1402.

    Article  CAS  Google Scholar 

  • Han, J.-K., Selke, S. E., Downes, T. W., & Harte, B. R. (2003). Application of a computer model to evaluate the ability of plastics to act as functional barriers. Packaging Technology and Science, 16(3), 107–118.

    Article  CAS  Google Scholar 

  • Han, W., Yu, Y., Li, N., & Wang, L. (2011). Application and safety assessment for nano-composite materials in food packaging. Chinese Science Bulletin, 56(12), 1216–1225.

    Article  Google Scholar 

  • Helmroth, E., Rijk, R., Dekker, M., & Jongen, W. (2002). Predictive modelling of migration from packaging materials into food products for regulatory purposes. Trends in Food Science & Technology, 13(3), 102–109.

    Article  CAS  Google Scholar 

  • Hernández-Munoz, P., Catalá, R., & Gavara, R. (2002). Simple method for the selection of the appropriate food simulant for the evaluation of a specific food/packaging interaction. Food Additives & Contaminants, 19(sup1), 192–200.

    Article  Google Scholar 

  • Huang, Y., Chen, S., Bing, X., Gao, C., Wang, T., & Yuan, B. (2011). Nanosilver migrated into food-simulating solutions from commercially available food fresh containers. Packaging Technology and Science, 24(5), 291–297.

    Article  CAS  Google Scholar 

  • Lau, O.-W., & Wong, S.-K. (1997). Mathematical model for the migration of plasticizers from food contact materials into solid food. Analytica Chimica Acta, 347, 249–256.

    Article  CAS  Google Scholar 

  • Li, X., He, C. B., Low, J. E., & Wong, S. Y. (2010). A barrier layer, a process of making a barrier layer and uses thereof. PCT/SG2010/000123. Singapore Patent.

  • Lickly, T. D., Rainey, M. L., Burgert, L. C., Breder, C. V., & Borodinsky, L. (1997). Using a simple diffusion model to predict residual monomer migration—considerations and limitations. Food Additives & Contaminants, 14(1), 65–74.

    Article  CAS  Google Scholar 

  • Mauricio-Iglesias, M., Peyron, S., Guillard, V., & Gontard, N. (2010). Wheat gluten nanocomposite films as food-contact materials: migration tests and impact of a novel food stabilization technology (high pressure). Journal of Applied Polymer Science, 116(5), 2526–2535.

    CAS  Google Scholar 

  • O’Brien, A., Leach, A., & Cooper, I. (2000). Polypropylene: establishment of a rapid extraction test for overall migration limit compliance testing. Packaging Technology and Science, 13(1), 13–18.

    Article  Google Scholar 

  • Piringer, O., Franz, R., Huber, M., Begley, T. H., & McNeal, T. P. (1998). Migration from food packaging containing a functional barrier: mathematical and experimental evaluation. Journal of Agricultural and Food Chemistry, 46(4), 1532–1538.

    Article  CAS  Google Scholar 

  • Restuccia, D., Spizzirri, U. G., Parisi, O. I., Cirillo, G., Curcio, M., Iemma, F., Puoci, F., Vinci, G., & Picci, N. (2010). New EU regulation aspects and global market of active and intelligent packaging for food industry applications. Food Control, 21(11), 1425–1435.

    Article  Google Scholar 

  • Roduit, B., Borgeat, C. H., Cavin, S., Fragniere, C., & Dudler, V. (2005). Application of finite element analysis (FEA) for the simulation of release of additives from multilayer polymeric packaging structures. Food Additives & Contaminants, 22(10), 945–955.

    Article  CAS  Google Scholar 

  • Rozalen, M., Huertas, F. J., & Brady, P. V. (2009). Experimental study of the effect of pH and temperature on the kinetics of montmorillonite dissolution. Geochimica et Cosmochimica Acta, 73(13), 3752–3766.

    Article  CAS  Google Scholar 

  • Silvestre, C., Duraccio, D., & Cimmino, S. (2011). Food packaging based on polymer nanomaterials. Progress in Polymer Science, 36(12), 1766–1782.

    Article  CAS  Google Scholar 

  • Sorrentino, A., Gorrasi, G., & Vittoria, V. (2007). Potential perspectives of bio-nanocomposites for food packaging applications. Trends in Food Science & Technology, 18(2), 84–95.

    Article  CAS  Google Scholar 

  • Spanish Association for Standardisation and Certification, AENOR (2005). UNE-EN 13130–1 Materials and articles in contact with foodstuffs. Plastics substances subject to limitation. Part 1: Guide to test methods for the specific migration of substances from plastics to foods and food simulants and the determination of substances in plastics and the selection of conditions of exposure to food simulants.

  • Stoffers, N. H., Brandsch, R., Bradley, E. L., Cooper, I., Dekker, M., Störmer, A., & Franz, R. (2005). Feasibility study for the development of certified reference materials for specific migration testing. Part 2: estimation of diffusion parameters and comparison of experimental and predicted data. Food Additives & Contaminants, 22(2), 173–184.

    Article  CAS  Google Scholar 

  • Tehrany, E. A., & Desobry, S. (2004). Partition coefficients in food/packaging systems: a review. Food Additives & Contaminants, 21(12), 1186–1202.

    Article  CAS  Google Scholar 

  • The Council of the European Communities. (1990). Relating to plastics materials and articles intended to come into contact with foodstuffs. Official Journal of the European Union, L349, 26–47.

    Google Scholar 

  • The Council of the European Communities. (2011). Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. Official Journal of the European Union, L12, 1–89.

    Google Scholar 

  • Torres, A., Guarda, A., Moraga, N., Romero, J., & Galotto, M. J. (2012). Experimental and theoretical study of thermodynamics and transport properties of multilayer polymeric food packaging. European Food Research and Technology, 234(4), 713–722.

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency. (1996). Method 3052 Microwave assisted acid digestion of siliceous and organically based matrices. Washington D.C: US Government printing office.

    Google Scholar 

Download references

Acknowledgments

This research was funded by the Agency for Science, Technology and Research (A*STAR), Singapore grant SERC 112-117-0038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, JY., Chieng, Y.Y., Li, X. et al. Experimental and Mathematical Assessment of Migration from Multilayer Food Packaging Containing a Novel Clay/Polymer Nanocomposite. Food Bioprocess Technol 8, 382–393 (2015). https://doi.org/10.1007/s11947-014-1408-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1408-5

Keywords

Navigation