Skip to main content
Log in

Enhancement of Chilling Stress Tolerance of Tomato Fruit by Postharvest Brassinolide Treatment

  • Communication
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Tomatoes, originally a tropical fruit, cannot easily be stored at low temperatures, due to the risk of chilling injury (CI). To develop an effective technique to reduce CI, the effects of treatment with 0, 3, and 6 μM brassinolide (BR) on chilling injury, electrolyte leakage (EL), contents of malondialdehyde (MDA) and proline, and activities of phospholipase D (PLD) and lipoxygenase (LOX) were investigated in tomato fruit stored at 1 °C for 21 days. Treatment with BR, especially at 6 μM, significantly alleviated chilling injury, reduced EL and MDA content, and increased proline content. Also, fruit treated with BR exhibited significantly lower PLD and LOX activities as compared with the control fruit. These results suggest that PLD and LOX are associated with the induction of CI in tomato fruit. BR might reduce CI by inhibiting PLD and LOX activities and by enhancing membrane integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Aghdam, M.S., Asghari, M., Khorsandi, O., & Mohayeji, M. (2012a). Alleviation of postharvest chilling injury of tomato fruit by salicylic acid treatment. Journal of Food Science and Technology. doi:10.1007/s13197-012-0757-1.

  • Aghdam, M. S., Asghari, M., Farmani, B., Mohayeji, M., & Moradbeygi, H. (2012b). Impact of postharvest brassinosteroids treatment on PAL activity in tomato fruit in response to chilling stress. Scientia Horticulturae, 144, 116–120.

    Article  CAS  Google Scholar 

  • Bajguz, A., & Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry, 74, 1–8.

    Article  Google Scholar 

  • Bohnert, H. J., & Jensen, R. G. (1996). Strategies for engineering water-stress tolerance in plants. Trends in Biotechnology, 14, 89–97.

    Article  CAS  Google Scholar 

  • Bourne, M. C. (2006). Selection and use of postharvest technologies as a component of the food chain. Journal of Food Science, 69, 43–46.

    Article  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of micro-gram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  • Cao, S., Xu, Q., Cao, Y., Qian, K., An, K., Zhu, Y., et al. (2005). Loss-of-function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. Physiologia Plantarum, 123, 57–66.

    Article  CAS  Google Scholar 

  • Ding, C. K., Wang, C. Y., Gross, K. C., & Smith, D. L. (2002). Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta, 214, 895–901.

    Article  CAS  Google Scholar 

  • Fariduddin, Q., Yusuf, M., Chalkoo, S., Hayat, S., & Ahmad, A. (2011). 28-homobrassinolide improves growth and photosynthesis in Cucumis sativus L. through an enhanced antioxidant system in the presence of chilling stress. Photosynthetica, 49, 55–64.

    Article  CAS  Google Scholar 

  • Jiang, Y., Shiina, T., Nakamura, N., & Nakahara, A. (2001). Electrical conductivity evaluation of postharvest strawberry damage. Journal of Food Science, 66, 1392–1395.

    Article  CAS  Google Scholar 

  • Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207, 604–611.

    Article  CAS  Google Scholar 

  • Hong, J. H., & Gross, K. C. (2006). Maintaining quality of fresh-cut tomato slices through modified atmosphere packaging and low temperature storage. Journal of Food Science, 66, 960–965.

    Article  Google Scholar 

  • Karakurt, Y., & Huber, D. J. (2003). Activities of several membrane and cell wall hydrolases, ethylene biosynthetic enzymes, and cell wall polyuronides degradation during low-temperature storage of intact and fresh-cut papaya (Carica papaya) fruit. Postharvest Biology and Technology, 28, 219–229.

    Article  CAS  Google Scholar 

  • Li, B., Zhang, C., Cao, B., Qin, G., Wang, W., & Tian, S. (2012). Brassinolide enhances cold stress tolerance of fruit by regulating plasma membrane proteins and lipids. Amino Acids, 43(6), 2469–2480. doi:10.1007/s00726-012-1327-6.

    Article  CAS  Google Scholar 

  • Lyons, J. M. (1973). Chilling injury in plants. Annual Review of Plant Physiology, 24, 445–466.

    Article  CAS  Google Scholar 

  • Mao, L. C., Wang, G. Z., Zhu, C. G., & Pang, H. Q. (2007a). Involvement of phospholipase D and lipoxygenase in response to chilling stress in postharvest cucumber fruits. Plant Science, 172, 400–405.

    Article  CAS  Google Scholar 

  • Mao, L., Pang, H., Wang, G., & Zhu, C. (2007b). Phospholipase D and lipoxygenase activity of cucumber fruit in response to chilling stress. Postharvest Biology and Technology, 44, 42–47.

    Article  CAS  Google Scholar 

  • Marangoni, A. G., Palma, T., & Stanley, D. W. (1996). Membrane effects in postharvest physiology. Postharvest Biology and Technology, 7, 193–217.

    Article  Google Scholar 

  • Nakashita, H., Yasuda, M., Nitta, T., Asami, T., Fujikoa, S., Arai, Y., et al. (2003). Brassinosteroids functions in a broad range of disease resistance in tobacco and rice. The Plant Journal, 33, 887–898.

    Article  CAS  Google Scholar 

  • Ogweno, J. O., Song, X. S., Shi, K., Hu, W. H., Mao, W. H., Zhou, Y. H., et al. (2008). Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. Plant Growth Regulation, 27, 49–57.

    Article  CAS  Google Scholar 

  • Ozdemir, F., Bor, M., Demiral, T., & Turkan, I. (2004). Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L) under salinity stress. Plant Growth Regulation, 42, 203–211.

    Article  Google Scholar 

  • Pinhero, R. G., Paliyath, G., Yada, R. Y., & Murr, D. P. (1998). Modulation of phospholipase D and lipoxygenase activities during chilling. Relation to chilling tolerance of maize seedlings. Plant Physiology and Biochemistry, 36, 213–224.

    Article  CAS  Google Scholar 

  • Re, M. D., Gonzalez, C., Sdrigotti, M. A., Sorrequieta, A., Valle, E. M., & Boggio, S. B. (2012). Ripening tomato fruit after chilling storage alters protein turnover. Journal of the Science of Food and Agriculture, 92, 1490–1496.

    Article  CAS  Google Scholar 

  • Robinson, J. M., & Bunce, J. A. (2000). Influence of drought-induced water stress on soybean and spinach leaf ascorbate-dehydroascorbate level and redox status. International Journal of Plant Science, 161, 271–279.

    Article  CAS  Google Scholar 

  • Rui, H., Cao, S., Shang, H., Jin, P., Wang, K., & Zheng, Y. (2010). Effects of heat treatment on internal browning and membrane fatty acid in loquat fruit in response to chilling stress. Journal of the Science of Food and Agriculture, 90, 1557–1561.

    Article  CAS  Google Scholar 

  • Shan, D. P., Huang, J. G., Yang, Y. T., Guo, Y. H., Wu, C. A., Yang, G. D., et al. (2007). Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytology, 176, 70–81.

    Article  CAS  Google Scholar 

  • Sharp, R. E., Hsiao, T. C., & Silk, W. K. (1990). Growth of the maize primary root at low water potentials: II. Role of growth and deposition of hexose and potassium in osmotic adjustment. Plant Physiology, 93, 1337–1346.

    Article  CAS  Google Scholar 

  • Sharom, M., Willemot, C., & Thompson, J. E. (1994). Chilling injury induces lipid phase changes in membranes of tomato fruit. Plant Physiology, 105, 305–308.

    CAS  Google Scholar 

  • Todd, J. F., Paliyath, G., & Thompson, J. E. (1990). Characteristics of a membrane associated lipoxygenase in tomato fruit. Plant Physiology, 94, 1225–1232.

    Article  CAS  Google Scholar 

  • Wang, Q., Ding, T., Gao, L., Pang, J., & Yang, N. (2012). Effect of brassinolide on chilling injury of green bell pepper in storage. Scientia Horticulturae, 144, 195–200.

    Article  CAS  Google Scholar 

  • Wise, R. R., & Naylor, A. W. (1987). Chilling-enhanced photooxidation: the peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure. Plant Physiology, 83, 272–277.

    Article  CAS  Google Scholar 

  • Wonsheree, T., Kesta, S., & van Doorn, W. G. (2009). The relationship between chilling injury and membrane damage in lemon basil (Ocimum citriodourum) leaves. Postharvest Biology and Technology, 51, 91–96.

    Article  Google Scholar 

  • Yuan, G. F., Jia, C. G., Li, Z., Sun, B., Zhang, L. P., Liu, N., et al. (2010). Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Scientia Horticultura, 126, 103–108.

    Article  CAS  Google Scholar 

  • Zhao, D. Y., Shen, L., Fan, B., Liu, K. L., Yu, M. M., Zheng, Y., et al. (2009). Physiological and genetic properties of tomato fruit from 2 cultivars differing in chilling tolerance at cold storage. Journal of Food Science, 74, 348–352.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Soleimani Aghdam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aghdam, M.S., Mohammadkhani, N. Enhancement of Chilling Stress Tolerance of Tomato Fruit by Postharvest Brassinolide Treatment. Food Bioprocess Technol 7, 909–914 (2014). https://doi.org/10.1007/s11947-013-1165-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-013-1165-x

Keywords

Navigation