Skip to main content

Advertisement

Log in

Hydrodynamic Cavitation for Food and Water Processing

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Hydrodynamic cavitation, which was and is still looked upon as an unavoidable nuisance in the flow systems, can be a serious contender as an alternative to acoustic cavitation for intensification of different physical and chemical processing applications. Hydrodynamic cavitation results in the generation of hot spots, highly reactive free radicals and turbulence associated with liquid circulation currents, which can result in the intensification of various physical/chemical operations. The present work highlights the different aspects of hydrodynamic cavitation including the basic mechanism, bubble dynamics analysis with recommendations for optimum operating parameters, reactor designs and an overview of applications in different areas of food and water processing. The major applications discussed in the work include food sterilization, microbial cell disruption for the release or extraction of enzymes, water disinfection and wastewater treatment. It appears that hydrodynamic cavitation results in conditions similar to those generated using acoustic cavitation but at comparatively much larger scale of operation and with better energy efficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anand, H., Balasundaram, B., Pandit, A. B., & Harrison, S. T. L. (2007). The effect of chemical pretreatment combined with mechanical disruption on the extent of disruption and release of intracellular protein from E. coli. Biochemical Engineering Journal, 35(2), 166–173.

    Article  CAS  Google Scholar 

  • Arrojo, S., & Benito, Y. (2008). A theoretical study of hydrodynamic cavitation. Ultrasonics Sonochemistry, 15(3), 203–211.

    Article  CAS  Google Scholar 

  • Arrojo, S., Benito, Y., & Martínez-Tarifa, A. (2008). A parametrical study of disinfection with hydrodynamic cavitation. Ultrasonics Sonochemistry, 15(5), 903–908.

    CAS  Google Scholar 

  • Balasundaram, B., & Harrison, S. T. L. (2006a). Disruption of Brewers' yeast by hydrodynamic cavitation: process variables and their influence on selective release. Biotechnology and Bioengineering, 94(2), 303–311.

    Article  CAS  Google Scholar 

  • Balasundaram, B., & Harrison, S. T. L. (2006b). Study of physical and biological factors involved in the disruption of E. coli by hydrodynamic cavitation. Biotechnology Progress, 22(3), 907–913.

    Article  CAS  Google Scholar 

  • Balasundaram, B., & Pandit, A. B. (2001a). Selective release of invertase by hydrodynamic cavitation. Biochemical Engineering Journal, 8, 251–256.

    Article  CAS  Google Scholar 

  • Balasundaram, B., & Pandit, A. B. (2001b). Significance of location of enzymes on their release during microbial cell disruption. Biotechnology and Bioengineering, 75, 607–614.

    Article  CAS  Google Scholar 

  • Bitton, G. (1994). Wastewater microbiology. New York: Wiley.

    Google Scholar 

  • Chand, R., Bremner, D. H., Namkung, K. C., Collier, P. J., & Gogate, P. R. (2007). Water disinfection using a novel approach of ozone assisted liquid whistle reactor. Biochemical Engineering Journal, 35, 357–364.

    Article  CAS  Google Scholar 

  • Chatterjee, D., & Arakeri, V. H. (1997). Towards the concept of hydrodynamic cavitation control. Journal of Fluid Mechanics, 332, 377–394.

    CAS  Google Scholar 

  • Cheremissinoff, N. P., Cheremissinoff, P. N., & Trattner, R. B. (1981). Chemical and nonchemical disinfection. Ann Arbor: Ann Arbor Science Publishing.

    Google Scholar 

  • Chisti, Y., & Moo-Young, M. (1986). Disruption of microbial cells for intracellular products. Enzyme and Microbial Technology, 8, 194–204.

    Article  CAS  Google Scholar 

  • De Bonis, M. V., & Ruocco, G. (2010). Heat and mass transfer modeling during continuous flow processing of fluid food by direct steam injection. International Communications in Heat and Mass Transfer, 37(3), 239–244.

    Article  Google Scholar 

  • Farkade, V. D., Harrison, S. T. L., & Pandit, A. B. (2005). Heat induced translocation of proteins and enzymes within the cells: An effective way to optimize the microbial cell disruption process. Biochemical Engineering Journal, 23, 247–257.

    Article  CAS  Google Scholar 

  • Farkade, V. D., Harrison, S. T. L., & Pandit, A. B. (2006). Improved cavitational cell disruption following pH pretreatment for the extraction of β-galactosidase from Kluveromyces lactis. Biochemical Engineering Journal, 31(1), 25–30.

    Article  CAS  Google Scholar 

  • Fernandez, F. A. N., Oliveira, F. I. P., & Rodrigues, S. (2008). Use of ultrasound for dehydration of papayas. Food and Bioprocess Technology, 1(4), 339–345.

    Article  Google Scholar 

  • Fernandez, F. A. N., Law, C. L., Rodrigues, S. & Majumdar, A. S. (2010). Drying of exotic tropical fruits: a comprehensive review. Food and Bioprocess Technology. doi:10.1007/s11947-010-0323-7.

  • Geciova, J., Bury, D., & Jelen, P. (2002). Methods for disruption of microbial cells for potential use in the dairy industry: A review. International Dairy Journal, 12(6), 541–553.

    Article  CAS  Google Scholar 

  • Gogate, P. R., & Pandit, A. B. (2000). Engineering design methods for cavitation reactors II: Hydrodynamic cavitation reactors. American Institute of Chemical Engineers Journal, 46(8), 1641–1649.

    CAS  Google Scholar 

  • Gogate, P. R., & Pandit, A. B. (2001). Hydrodynamic cavitation reactors: A state of the art review. Reviews in Chemical Engineering, 17, 1–85.

    Article  CAS  Google Scholar 

  • Gogate, P. R., & Pandit, A. B. (2004). A review of imperative technologies for waste water treatment II: Hybrid methods. Advances in Environmental Research, 8, 553–597.

    Article  CAS  Google Scholar 

  • Gogate, P. R., Shirgaonkar, I. Z., Sivakumar, M., Senthilkumar, P., Vichare, N. P., & Pandit, A. B. (2001). Cavitation reactors: Efficiency analysis using a model reaction. American Institute of Chemical Engineers Journal, 47(11), 2326–2338.

    Google Scholar 

  • Hansson, I., Morch, K. A., & Preece, C. M. (1977). A comparison of ultrasonically generated cavitation erosion and natural flow cavitation erosion. In Proceedings of Ultrasonics International Conference, p. 267, Brighton, UK.

  • Harris, G. D., Adams, V. D., Sorensen, D. L., & Dupont, R. R. (1987). The influence of photoreactivation and water quality on ultraviolet disinfection of secondary municipal wastewater. Journal Water Pollution Control Federation, 59, 781–787.

    CAS  Google Scholar 

  • Harrison, S. T. L. (2002). Bacterial cell disruption: A key unit operation in the recovery of intracellular products. Biotechnology Advances, 9, 217–240.

    Article  Google Scholar 

  • Harrison, S. T. L., & Pandit, A. B. (1992). The disruption of microbial cells by hydrodynamic cavitation. Ninth International Biotechnology Symposium, Washington, USA.

  • Hirooka, K., Asano, R., Yokoyama, A., Okazaki, M., Sakamoto, A., & Nakai, Y. (2009). Reduction in excess sludge production in a dairy wastewater treatment plant via nozzle-cavitation treatment: Case study of an on-farm wastewater treatment plant. Bioresource Technology, 100(12), 3161–3166.

    Article  CAS  Google Scholar 

  • Hwang, B.-K., Son, H.-S., Kim, J.-H., Ahn, C. H., Lee, C.-H., Song, J.-Y., et al. (2010). Decomposition of excess sludge in a membrane bioreactor using a turbulent jet flow ozone contactor. Journal of Industrial and Engineering Chemistry, 16(4), 602–608.

    Article  CAS  Google Scholar 

  • Jyoti, K. K., & Pandit, A. B. (2001). Water disinfection by acoustic and hydrodynamic cavitation. Biochemical Engineering Journal, 7, 201–212.

    Article  CAS  Google Scholar 

  • Jyoti, K. K., & Pandit, A. B. (2003). Hybrid cavitation methods for water disinfection. Biochemical Engineering Journal, 14(1), 9–17.

    Article  CAS  Google Scholar 

  • Jyoti, K. K., & Pandit, A. B. (2004). Ozone and cavitation for water disinfection. Biochemical Engineering Journal, 18(1), 9–19.

    Article  CAS  Google Scholar 

  • Kalumuck, K. M., & Chahine, G. L. (2000). The use of cavitating jets to oxidize organic compounds in water. Journal of Fluids Engineering, 122, 465–470.

    Article  CAS  Google Scholar 

  • Kanthale, P. M., Gogate, P. R., Wilhelm, A. M., & Pandit, A. B. (2005). Dynamics of cavitational bubbles and design of a hydrodynamic cavitational reactor: Cluster approach. Ultrasonics Sonochemistry, 12, 441–452.

    Article  CAS  Google Scholar 

  • Kim, H. J., Nguyen, D. X., & Bae, J. H. (2008). The performance of the sludge pretreatment system with venturi tubes. Water Science and Technology, 57, 131–137.

    Article  CAS  Google Scholar 

  • Kumar, P. S., & Pandit, A. B. (1999). Modeling hydrodynamic cavitation. Chemical Engineering and Technology, 22, 1017–1027.

    Article  CAS  Google Scholar 

  • Luche, J. L. (1999). Synthetic organic sonochemistry. New York: Plenum.

    Google Scholar 

  • Mahulkar, A. V., Bapat, P. S., Pandit, A. B., & Lewis, F. M. (2008). Steam bubble cavitation. American Institute of Chemical Engineers Journal, 54(7), 1711–1724.

    CAS  Google Scholar 

  • Mason, T. J., & Lorimer, J. P. (1988). Sonochemistry: Theory, applications and uses of ultrasound in chemistry. New York: Wiley.

    Google Scholar 

  • Mason, T. J., & Lorimer, J. P. (2002). Applied sonochemistry: The uses of power ultrasound in chemistry and processing. Weinheim: Wiley-VCH Verlag GmbH.

    Google Scholar 

  • Mason, T. J., Joyce, E., Phull, S. S., & Lorimer, J. P. (2003). Potential uses of ultrasound in the biological decontamination of water. Ultrasonics Sonochemistry, 10(6), 319–323.

    Article  CAS  Google Scholar 

  • Mezule, L., Tsyfansky, S., Yakushevich, V., & Juhna, T. (2009). A simple technique for water disinfection with hydrodynamic cavitation: Effect on survival of Escherichia coli. Desalination, 248(1–3), 152–159.

    Article  CAS  Google Scholar 

  • Milly, P. J., Toledo, R. T., Kerr, W. L., & Armstead, D. (2007). Inactivation of food spoilage microorganisms by hydrodynamic cavitation to achieve pasteurization and sterilization of fluid foods. Journal of Food Science, 72(9), M414–M422.

    Article  CAS  Google Scholar 

  • Milly, P. J., Toledo, R. T., Kerr, W. L., & Armstead, D. (2008). Hydrodynamic cavitation: Characterization of a novel design with energy considerations for the inactivation of Saccharomyces cerevisiae in apple juice. Journal of Food Science, 73(6), M298–M303.

    Article  CAS  Google Scholar 

  • Minear, R. A., & Amy, G. L. (1996). Disinfection by-products in water treatment. Boca Raton: CRC.

    Google Scholar 

  • Moholkar, V. S., & Pandit, A. B. (1997). Bubble behavior in hydrodynamic cavitation: Effect of turbulence. American Institute of Chemical Engineers Journal, 43, 1641–1648.

    CAS  Google Scholar 

  • Moholkar, V. S., & Pandit, A. B. (2001a). Modeling of hydrodynamic cavitation reactors: A unified approach. Chemical Engineering Science, 56, 6295–6302.

    Article  CAS  Google Scholar 

  • Moholkar, V. S., & Pandit, A. B. (2001b). Numerical investigations in the behaviour of one-dimensional bubbly flow in hydrodynamic cavitation. Chemical Engineering Science, 56, 1411–1418.

    Article  CAS  Google Scholar 

  • Moholkar, V. S., Senthilkumar, P., & Pandit, A. B. (1999). Hydrodynamic cavitation for sonochemical effects. Ultrasonics Sonochemistry, 6, 53–65.

    Article  CAS  Google Scholar 

  • Parker, J. A., & Darby, J. L. (1995). Particle-associated coliform in secondary effluents: Shielding from ultra-violet light disinfection. Water Environment Research, 67, 1065–1075.

    Article  CAS  Google Scholar 

  • Phull, S. S., Newman, A. P., Lorimer, J. P., Pollet, B., & Mason, T. J. (1997). The development and evaluation of ultrasound in the biocidal treatment of water. Ultrasonics Sonochemistry, 4(2), 157–164.

    Article  CAS  Google Scholar 

  • Piyasena, P., Mohareb, E., & McKellar, R. C. (2003). Inactivation of microbes using ultrasound: A review. International Journal of Food Microbiology, 87(3), 207–216.

    Article  CAS  Google Scholar 

  • Pontius, F. W. (1990). American waterworks association: Water quality and treatment. New York: McGraw-Hill.

    Google Scholar 

  • Povey, M. J. W., & Mason, T. J. (1998). Ultrasound in food processing. London: Blackie Academic & Professional.

    Google Scholar 

  • Pradhan, A. A., & Gogate, P. R. (2010). Removal of p-nitrophenol using hydrodynamic cavitation and fenton chemistry. Chemical Engineering Journal, 156, 77–82.

    Article  CAS  Google Scholar 

  • Sampathkumar, K., & Moholkar, V. S. (2007). Conceptual design of a novel hydrodynamic cavitation reactor. Chemical Engineering Science, 62, 2698–2711.

    Article  Google Scholar 

  • Save, S. S., Pandit, A. B., & Joshi, J. B. (1994). Microbial cell disruption: Role of cavitation. Chemical Engineering Journal, 55, B67–B72.

    Google Scholar 

  • Save, S. S., Pandit, A. B., & Joshi, J. B. (1997). Use of hydrodynamic cavitation for large scale cell disruption. Chemical Engineering Research and Design, 75(C), 41–49.

    Google Scholar 

  • Senthilkumar, P., Sivakumar, M., & Pandit, A. B. (2000). Experimental quantification of chemical effects of hydrodynamic cavitation. Chemical Engineering Science, 55(9), 1633–1639.

    Article  Google Scholar 

  • Sharma, A., Gogate, P. R., Mahulkar, A., & Pandit, A. B. (2008). Modeling of hydrodynamic cavitation reactors using orifice plates considering hydrodynamics and chemical reactions occurring in bubble. Chemical Engineering Journal, 143(1–3), 201–209.

    Article  CAS  Google Scholar 

  • Shirgaonkar, I. Z., Lothe, R. R., & Pandit, A. B. (1998). Comments on the mechanism of microbial cell disruption in high pressure and high speed devices. Biotechnology Progress, 14(4), 657–660.

    Article  CAS  Google Scholar 

  • Singhal, A. K., Athavale, M. M., Li, H., & Jiang, Y. (2002). Mathematical basis and validation of the full cavitation model. Journal of Fluids Engineering, 124(3), 617–624.

    Article  Google Scholar 

  • Sivakumar, M., & Pandit, A. B. (2002). Wastewater treatment: A novel energy efficient hydrodynamic cavitational technique. Ultrasonics Sonochemistry, 9, 123–131.

    Article  CAS  Google Scholar 

  • Suslick, K. S. (1990). The chemical effects of ultrasound. Science, 247, 1439–1445.

    Article  CAS  Google Scholar 

  • Tiwari, B. K., O'Donnell, C. P., Muthukumarappan, K., & Cullen, P. J. (2009). Effect of low temperature sonication on orange juice quality parameters using response surface methodology. Food and Bioprocess Technology, 2(1), 109–114.

    Article  CAS  Google Scholar 

  • Vichare, N. P., Senthilkumar, P., Moholkar, V. S., Gogate, P. R., & Pandit, A. B. (2000). Energy analysis in acoustic cavitation. Industrial and Engineering Chemistry Research, 39, 1480–1486.

    Article  CAS  Google Scholar 

  • Walkling-Ribeiro, M., Noci, F., Riener, J., Cronin, D. A., Lyng, J. G., & Morgan, D. J. (2009). The impact of thermosonication and pulsed electric fields on Staphylococcus aureus inactivation and selected quality parameters in orange juice. Food and Bioprocess Technology, 2(4), 422–430.

    Article  Google Scholar 

  • Wang, X., & Zhang, Y. (2009). Degradation of alachlor in aqueous solution by using hydrodynamic cavitation. Journal of Hazardous Materials, 161, 202–207.

    Article  CAS  Google Scholar 

  • Wang, X., Wang, J., Guo, P., Guo, W., & Li, G. (2008). Chemical effect of swirling jet-induced cavitation: Degradation of rhodamine B in aqueous solution. Ultrasonics Sonochemistry, 15, 357–363.

    Article  Google Scholar 

  • Wang, X., Wang, J., Guo, P., Guo, W., & Wang, C. (2009). Degradation of rhodamine B in aqueous solution by using swirling jet-induced cavitation combined with H2O2. Journal of Hazardous Materials, 169, 486–491.

    Article  CAS  Google Scholar 

  • White, G. C. (1992). The handbook of chlorination and alternative disinfectants. New York: Van Nostrand.

    Google Scholar 

  • Yan, Y., & Thorpe, R. B. (1990). Flow regime transitions due to cavitation in flow through an orifice. International Journal of Multiphase Flow, 16(6), 1023–1045.

    Article  CAS  Google Scholar 

  • Yan, Y., Thorpe, R. B., & Pandit, A. B. (1988). Cavitation noise and its suppression by air in orifice flow. In Proceedings of International Symposium on flow induced Vibration and Noise (pp. 25–40). Chicago: ASME.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parag R. Gogate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gogate, P.R. Hydrodynamic Cavitation for Food and Water Processing. Food Bioprocess Technol 4, 996–1011 (2011). https://doi.org/10.1007/s11947-010-0418-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-010-0418-1

Keywords

Navigation