Skip to main content
Log in

A critical review of the current technologies in wastewater treatment plants by using hydrodynamic cavitation process: principles and applications

  • Review article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

In the last decade, hydrodynamic cavitation (HC) was increasingly used in the field of wastewater treatment. Due to its oxidative capability, HC was applied to treat aqueous effluents polluted by organic, toxic and bio-refractory contaminants, whereas its mechanical and chemical effects have allowed to disintegrate cells of microorganisms in biological applications. Due to their geometries, HC can be detected in some reactors, in which a variation of hydraulic parameters in the fluid such as flow pressure and flow velocity is induced. HC process involves the formation, growth, implosion and subsequent collapse of cavities, occurring in a very short period of time and releasing large magnitudes of power. In this paper, the vast literature on HC is critically reviewed, focusing on the basic principles behind it, in terms of process definition and analysis of governing mechanisms of both HC generation and pollutants degradation. The influence of various parameters on HC effectiveness was assessed, considering fluid properties, construction features of HC devices and technological aspects of processes. The synergetic effect of HC combined with chemicals or other techniques was discussed. An overview of the main devices used for HC generation and different existing methods to evaluate the cavitation effectiveness was provided. Knowledge buildup and optimization for such complex systems from mathematical modeling was highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Čudina M. Detection of cavitation phenomenon in a centrifugal pump using audible sound. 2003;17:1335–47.

  2. McNulty PJ, Pearsall IS. Cavitation inception in pumps. J Fluids Eng. 1982;104:99–104.

    Article  Google Scholar 

  3. Neil GD, Reuben RL, Sandford PM, Brown ER, Steel JA. Detection of incipient cavitation in pumps using acoustic emission. J Process Mech Eng. 1997;211:267–77.

    Article  Google Scholar 

  4. Stepanoff AJ. Cavitation in centrifugal pumps with liquids other than water. J Eng Power. 1961;83:79–89.

    Article  Google Scholar 

  5. Escaler X, Egusquiza E, Farhat M, Avellan F, Coussirat M. Detection of cavitation in hydraulic turbines. Mech Syst Signal Process. 2006;20:983–1007.

    Article  Google Scholar 

  6. Ogawa K, Kimura T. Hydrodynamic characteristics of a butterfly valve–prediction of pressure loss characteristics. ISA Trans. 1995;34:319–26.

    Article  Google Scholar 

  7. Batten WMJ, Bahaj AS, Molland AF, Chaplin JR. The prediction of the hydrodynamic performance of marine current turbines. Renew Energy. 2008;33:1085–96.

    Article  Google Scholar 

  8. Mancuso G, Langone M, Laezza M, Andreottola G. Decolourization of Rhodamine B: a swirling jet-induced cavitation combined with NaOCl. Ultrason Sonochem. 2016;32:18–30.

    Article  CAS  Google Scholar 

  9. Mancuso G, Langone M, Andreottola G. A swirling jet-induced cavitation to increase activated sludge solubilisation and aerobic sludge biodegradability. Ultrason Sonochem. 2017;35:489–501.

    Article  CAS  Google Scholar 

  10. Mancuso G, Langone M, Andreottola G, Bruni L. Effects of hydrodynamic cavitation, low-level thermal and low-level alkaline pre-treatments on sludge solubilisation. Ultrason Sonochem. 2019;59:104750.

    Article  CAS  Google Scholar 

  11. Le NT, Julcour-lebigue C, Delmas H. An executive review of sludge pretreatment by sonication. JES. 2015;37:139–53.

    CAS  Google Scholar 

  12. Gogate PR. A.M. Kabadi. A review of applications of cavitation in biochemical engineering / biotechnology. 2009;44:60–72.

    CAS  Google Scholar 

  13. Gogate PR. Cavitation: an auxiliary technique in wastewater treatment schemes. Adv Environ Res. 2002;6:335–58.

    Article  CAS  Google Scholar 

  14. Sivakumar M, Pandit AB. Wastewater treatment: a novel energy efficient hydrodynamic cavitational technique. Ultrason Sonochem. 2002;9:123–31.

    Article  CAS  Google Scholar 

  15. Suenaga T, Nishimura M, Yoshino H, Kato H, Nonokuchi M, Fujii T, et al. High-pressure jet device for activated sludge reduction: feasibility of sludge solubilization. Biochem Eng J. 2015;100:1–8.

    Article  CAS  Google Scholar 

  16. Kim HJ, Nguyen DX, Bae JH. The performance of the sludge pretreatment system with venturi tubes. Water Sci Technol. 2008;57:131–7.

    Article  CAS  Google Scholar 

  17. Hirooka K, Asano R, Yokoyama A, Okazaki M, Sakamoto A, Nakai Y. Reduction in excess sludge production in a dairy wastewater treatment plant via nozzle-cavitation treatment: case study of an on-farm wastewater treatment plant. Bioresour Technol. 2009;100:3161–6.

    Article  CAS  Google Scholar 

  18. Lee I, Han J. The effects of waste-activated sludge pretreatment using hydrodynamic cavitation for methane production. Ultrason Sonochem. 2013;20:1450–5.

    Article  CAS  Google Scholar 

  19. Petkovšek M, Mlakar M, Levstek M, Strazar M, Širok B, Dular M. A novel rotation generator of hydrodynamic cavitation for waste-activated sludge disintegration. 2015;26:408–14.

  20. Patil PN, Gogate PR, Csoka L, Dregelyi-kiss A, Horvath M. Intensification of biogas production using pretreatment based on hydrodynamic cavitation. Ultrason Sonochem. 2016;30:79–86.

    Article  CAS  Google Scholar 

  21. Cai M, Hu J, Lian G, Xiao R, Song Z, Jin M, et al. Synergetic pretreatment of waste activated sludge by hydrodynamic cavitation combined with Fenton reaction for enhanced dewatering. Ultrason Sonochem. 2018;42:609–18.

    Article  CAS  Google Scholar 

  22. Dular M, Griessler-Bulc T, Gutierrez-Aguirre I, Heath E, Kosjek T, Krivograd Klemenčič A, et al. Use of hydrodynamic cavitation in (waste) water treatment. Ultrason Sonochem. 2016;29:577–88.

    Article  CAS  Google Scholar 

  23. Didenko YT, McNamara WB, Suslick KS. Hot spot conditions during cavitation in water. J Am Chem Soc. 1999;121:5817–8.

    Article  CAS  Google Scholar 

  24. Pinjari DV, Pandit AB. Cavitation milling of natural cellulose to nanofibrils. Ultrason Sonochem. 2010;17:845–52.

    Article  CAS  Google Scholar 

  25. Y.T.. Shah, A.B.. Pandit, V.S. Moholkar, Cavitation reaction engineering, Luss Dan, 1999.

  26. Mahulkar AV, Bapat PS, Pandit AB, Lewis FM. Steam bubble cavitation. AICHE J. 2008;54:1711–24.

    Article  CAS  Google Scholar 

  27. B.T.J. Mason, J.P. Lorimer, Applied sonochemistry: the uses of power ultrasound in chemistry and processing, 2004.

  28. T.J. Mason, J.P. Lorimer, Sonochemistry , theory, applications and uses of ultrasound in chemistry, in: E.H. Publishers (Ed.), Chichester, 1989: pp. 1150–1151.

  29. Brennen CE. Cavitation and bubble dynamics. Oxford: Oxford University; 1995.

    Google Scholar 

  30. Knapp RT, Daily JW, Hammit FG. Cavitation. New York: McGraw-Hill; 1970.

    Google Scholar 

  31. Pilli S, Bhunia P, Yan S, Leblanc RJ, Tyagi RD, Surampalli RY. Ultrasonic pretreatment of sludge: a review. Ultrason Sonochem. 2011;18:1–18.

    Article  CAS  Google Scholar 

  32. Gogate PR, Pandit AB. Engineering design methods for cavitation reactors II: hydrodynamic cavitation. AICHE J. 2000;46:1641–9.

    Article  CAS  Google Scholar 

  33. Delmas H, Le NT, Barthe L, Julcour-lebigue C. Optimization of hydrostatic pressure at varied sonication conditions – power density , intensity , very low frequency – for isothermal ultrasonic sludge treatment. Ultrason Sonochem. 2015;25:51–9.

    Article  CAS  Google Scholar 

  34. F. Avellan, M. Farhat, Shock pressure generated by cavitation vortex collapse, in: Proc. Third Onternational Symp. Cavitation Noise Eros. Fluid Syst., FED-vol 88, ASME Winter Annual Meeting San Francisco, CA, 1989: pp. 119–125.

  35. Akhatov I, Lindau O, Topolnikov A, Mettin R, Vakhitova N, Lauterborn W. Collapse and rebound of a laser-induced cavitation bubble. Phys Fluids. 2001;13:2805–19.

    Article  CAS  Google Scholar 

  36. J.-P. Franc, J.-M. Michel, Foundamentals of cavitation, 2005.

    Google Scholar 

  37. Riesz P, Berdahl D, Christman CL. Free radical generation by ultrasound in aqueous and nonaqueous solutions. Environ Health Perspect. 1985;64:233–52.

    Article  CAS  Google Scholar 

  38. Adewuyi YG. Critical Review sonochemistry in environmental remediation. 1. Combinative and hybrid sonophotochemical oxidation processes for the treatment of pollutants in water. Environ. Sci. Technol. 2005;39:3409–20.

    Article  CAS  Google Scholar 

  39. Farhat M, Chakravarty A, Field E. Luminescence from hydrodynamic cavitation. Math Phys Eng Sci. 2011;467:591–606.

    Google Scholar 

  40. Sunartio D, Ashokkumar M, Grieser F. Study of the coalescence of acoustic bubbles as a function of frequency, power, and water-soluble additives. J Am Chem Soc. 2007;129:6031–6.

    Article  CAS  Google Scholar 

  41. Zhao H, Wang J-X, Wang Q-A, Chen J-F, Yun J. Controlled liquid antisolvent precipitation of hydrophobic pharmaceutical nanoparticles in a microchannel reactor. Ind Eng Chem Res. 2007;46:8229–35.

    Article  CAS  Google Scholar 

  42. Jiju JM. Application of advanced oxidation processes for the degradation of organic water pollutants. Kottayam: Mahtama Gandhi University; 2000.

    Google Scholar 

  43. Moholkar VS, Pandit AB. Bubble behavior in hydrodynamic cavitation: Effect of turbulence. AIChE J. 1997;43:1641–8.

    Article  CAS  Google Scholar 

  44. Yan Y, Thorpe RB. Flow regime transitions due to cavitation in the flow through an orifice. Int J Multiph Flow. 1990;16:1023–45.

    Article  CAS  Google Scholar 

  45. K.K. Jyoti, A.B. Pandit, Water disinfection by acoustic and hydrodynamic cavitation, 7 (2001) 201–212.

  46. Saharan VK, Badve MP, Pandit AB. Degradation of reactive red 120 dye using hydrodynamic cavitation. Chem Eng J. 2011;178:100–7.

    Article  CAS  Google Scholar 

  47. Šarc A, Stepišnik-Perdih T, Petkovšek M, Dular M. The issue of cavitation number value in studies of water treatment by hydrodynamic cavitation. 2017;34:51–9.

  48. Petkovšek M, Zupanc M, Dular M, Kosjek T, Heath E, Kompare B, et al. Rotation generator of hydrodynamic cavitation for water treatment. Sep Purif Technol. 2013;118:415–23.

    Article  CAS  Google Scholar 

  49. F. Jean-Pierre, M. Jean-Marie, Fundamentals of cavitation, 2004.

  50. Choi J, Hsiao C, Chahine G, Ceccio S. Growth , oscillation and collapse of vortex cavitation bubbles. J Fluid Mech. 2009;624:255–79.

    Article  Google Scholar 

  51. Palau-Salvador G, González-Altozano P, Arviza-Valverde J. Numerical modeling of cavitating flows for simple geometries using FLUENT V6. 1, Spanish. J Agric Res. 2007;5:460–9.

    Google Scholar 

  52. Simpson A, Ranade VV. Modelling of hydrodynamic cavitation with orifice: influence of different orifice designs. Chem Eng Res Des. 2018;136:698–711.

    Article  CAS  Google Scholar 

  53. Pawar SK, Mahulkar AV, Pandit AB, Roy K, Moholkar VS. Sonochemical effect induced by hydrodynamic cavitation: comparison of Venturi/orifice flow geometries. VTT Publ. 2017;63:4705–16.

    CAS  Google Scholar 

  54. Navickas J, Chen L. Cavitating venturi performance characteristics. ASME Fluids Eng Div. 1993;177:153–9.

    Google Scholar 

  55. Wang Q, Jiang Z. Effect of nozzle geometrical and dynamic factors on cavitating and turbulent flow in a diesel multi-hole injector nozzle. Int J Therm Sci. 2013;70:132–43.

    Article  CAS  Google Scholar 

  56. S.B. Müller, L. Kleiser, Large-Eddy simulation of vortex breakdown in compressible swirling jet flow, in: Conf. Turbolence Interact., 2006.

  57. Ashrafizadeh SM, Ghassemi H. Experimental and numerical investigation on the performance of small-sized cavitating venturis. Flow Meas Instrum. 2015;42:6–15.

    Article  Google Scholar 

  58. Badve MP, Alpar T, Pandit AB, Gogate PR, Csoka L. Modeling the shear rate and pressure drop in a hydrodynamic cavitation reactor with experimental validation based on KI decomposition studies. 2015;22:272–7.

  59. Mancuso G. Experimental and numerical investigation on performance of a swirling jet reactor. Ultrason Sonochem. 2018;49:241–8.

    Article  CAS  Google Scholar 

  60. Wang X, Wang J, Guo P, Guo W, Li G. Chemical effect of swirling jet-induced cavitation: degradation of rhodamine B in aqueous solution. Ultrason Sonochem. 2008;15:357–63.

    Article  CAS  Google Scholar 

  61. Wang X, Wang J, Guo P, Guo W, Wang C. Degradation of rhodamine B in aqueous solution by using swirling jet-induced cavitation combined with H2O2. J Hazard Mater. 2009;169:486–91.

    Article  CAS  Google Scholar 

  62. Mishra KP, Gogate PR. Intensification of degradation of Rhodamine B using hydrodynamic cavitation in the presence of additives. Sep Purif Technol. 2010;75:385–91.

    Article  CAS  Google Scholar 

  63. Gogate PR, Bhosale GS. Comparison of effectiveness of acoustic and hydrodynamic cavitation in combined treatment schemes for degradation of dye wastewaters. Chem Eng Process Process Intensif. 2013;71:59–69.

    Article  CAS  Google Scholar 

  64. Wang J, Guo Y, Guo P, Yu J, Guo W, Wang X. Degradation of reactive brilliant red K-2BP in water using a combination of swirling jet-induced cavitation and Fenton process. Sep Purif Technol. 2014;130:1–6.

    Article  CAS  Google Scholar 

  65. Kumar MS, Sonawane SH, Pandit AB. Degradation of methylene blue dye in aqueous solution using hydrodynamic cavitation based hybrid advanced oxidation processes. Chem Eng Process Process Intensif. 2017;122:288–95.

    Article  CAS  Google Scholar 

  66. Zupanc M, Kosjek T, Petkovšek M, Dular M, Kompare B, Širok B, et al. Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment. Ultrason Sonochem. 2013;20:1104–12.

    Article  CAS  Google Scholar 

  67. Zupanc M, Kosjek T, Petkovšek M, Dular M, Kompare B, Sirok B, et al. Shear-induced hydrodynamic cavitation as a tool for pharmaceutical micropollutants removal from urban wastewater. Ultrason. Sonochem. 2013:18–9.

  68. Gogate PR, Shirgaonkar IZ, Sivakumar M, Senthilkumar P, Vichare NP, Pandit AB. Cavitation reactors: efficiency assessment using a model reaction. AICHE J. 2001;47:2526–38.

    Article  CAS  Google Scholar 

  69. Gore MM, Saharan VK, Pinjari DV, Chavan PV, Pandit AB. Degradation of reactive orange 4 dye using hydrodynamic cavitation based hybrid techniques. Ultrason Sonochem. 2014;21:1075–82.

    Article  CAS  Google Scholar 

  70. Habashi N, Mehrdadi N, Mennerich A, Alighardashi A, Torabian A. Hydrodynamic cavitation as a novel approach for pretreatment of oily wastewater for anaerobic co-digestion with waste activated sludge. Ultrason Sonochem. 2016;31:362–70.

    Article  CAS  Google Scholar 

  71. Zhang G, Zhang P, Yang J, Liu H. Energy-efficient sludge sonication: power and sludge characteristics. Bioresour Technol. 2008;99:9029–31.

    Article  CAS  Google Scholar 

  72. Braeutigam P, Franke M, Wu ZL, Ondruschka B. Role of different parameters in the optimization of hydrodynamic cavitation. Chem Eng Technol. 2010;33:932–40.

    Article  CAS  Google Scholar 

  73. J. Ozonek, Application of hydrodynamic cavitation in environmental engineering, 2012.

  74. Gogate PR, Pandit AB. Hydrodynamic cavitation reactors: a state of the art review. Chem Eng. 2001;17:1–85.

    CAS  Google Scholar 

  75. S. Manickam, M. Ashokkumar, Cavitation: A Novel Energy-Efficient Technique for the Generation of Nanomaterials, 2014.

  76. Chakinala AG, Gogate PR, Burgess AE, Bremner DH. Treatment of industrial wastewater effluents using hydrodynamic cavitation and the advanced Fenton process. 2008;15:49–54.

  77. Wang J, Wang X, Guo P, Yu J. Degradation of reactive brilliant red K-2BP in aqueous solution using swirling jet-induced cavitation combined with H2O2. Ultrason Sonochem. 2011;18:494–500.

    Article  CAS  Google Scholar 

  78. Basiri Parsa J, Ebrahimzadeh Zonouzian SA. Optimization of a heterogeneous catalytic hydrodynamic cavitation reactor performance in decolorization of Rhodamine B: application of scrap iron sheets. Ultrason Sonochem. 2013;20:1442–9.

    Article  CAS  Google Scholar 

  79. Ozonek J, Lenik K. Effect of different design features of the reactor on hydrodynamic cavitation process. Arch Mater Sci Eng. 2011;52:112–7.

    Google Scholar 

  80. Rajoriya S, Bargole S, Saharan VK. Degradation of a cationic dye (Rhodamine 6G) using hydrodynamic cavitation coupled with other oxidative agents: reaction mechanism and pathway. Ultrason Sonochem. 2017;34:183–94.

    Article  CAS  Google Scholar 

  81. Rajoriya S, Bargole S, Saharan VK. Degradation of reactive blue 13 using hydrodynamic cavitation: effect of geometrical parameters and different oxidizing additives. Ultrason. - Sonochemistry. 2017;37:192–202.

    Article  CAS  Google Scholar 

  82. Carpenter J, George S, Saharan VK. Low pressure hydrodynamic cavitating device for producing highly stable oil in water emulsion: effect of geometry and cavitation number. Chem Eng Process Process Intensif. 2017;116:97–104.

    Article  CAS  Google Scholar 

  83. Langone M, Ferrentino R, Trombino G, Puiseau WDE, Andreottola G, Rada EC, et al. Application of a Novel Hydrodynamic Cavitation System in Wastewater Treatment Plants. 2013;77:225–34.

  84. Suryawanshi PG, Bhandari VM, Sorokhaibam LG, Ruparelia JP, Ranade VV. Solvent degradation studies using hydrodynamic cavitation. Environ Prog Sustain Energy. 2017;37:295–304.

    Article  CAS  Google Scholar 

  85. Badve M, Gogate P, Pandit A, Csoka L. Hydrodynamic cavitation as a novel approach for wastewater treatment in wood finishing industry. Sep Purif Technol. 2013;106:15–21.

    Article  CAS  Google Scholar 

  86. Jain P, Bhandari VM, Balapure K, Jena J, Ranade VV, Killedar DJ. Hydrodynamic cavitation using vortex diode: an efficient approach for elimination of pathogenic bacteria from water. J Environ Manag. 2019;242:210–9.

    Article  CAS  Google Scholar 

  87. Prajapat AL, Gogate PR. Intensified depolymerization of aqueous polyacrylamide solution using combined processes based on hydrodynamic cavitation, ozone, ultraviolet light and hydrogen peroxide. Ultrason Sonochem. 2016;31:371–82.

    Article  CAS  Google Scholar 

  88. Joshi RK, Gogate PR. Degradation of dichlorvos using hydrodynamic cavitation based treatment strategies. Ultrason Sonochem. 2012;19:532–9.

    Article  CAS  Google Scholar 

  89. Wang X, Zhang Y. Degradation of alachlor in aqueous solution by using hydrodynamic cavitation. J Hazard Mater. 2009;161:202–7.

    Article  CAS  Google Scholar 

  90. Xie L, Terada A, Hosomi M. Disentangling the multiple effects of a novel high pressure jet device upon bacterial cell disruption. Chem Eng J. 2017;323:105–13.

    Article  CAS  Google Scholar 

  91. Kumar PS, Pandit AB. Modeling hydrodynamic cavitation. Chem Eng Technol. 1999;22:1017–27.

    Article  CAS  Google Scholar 

  92. Thanekar P, Panda M, Gogate PR. Degradation of carbamazepine using hydrodynamic combined with advanced oxidation processes. Ultrason - Sonochemistry. 2018;40:567–76.

    Article  CAS  Google Scholar 

  93. Choi J, Cui M, Lee Y, Kim J, Son Y, Khim J. Hydrodynamic cavitation and activated persulfate oxidation for degradation of bisphenol a: kinetics and mechanism. Chem Eng J. 2018;338:323–32.

    Article  CAS  Google Scholar 

  94. Tao Y, Cai J, Huai X, Liu B. A novel device for hazardous substances degradation based on double-cavitating-jets impingement: parameters optimization and efficiency assessment. J Hazard Mater. 2017;335:188–96.

    Article  CAS  Google Scholar 

  95. Merouani S, Hamdaoui O, Saoudi F, Chiha M. Sonochemical degradation of Rhodamine B in aqueous phase: effects of additives. Chem Eng J. 2010;158:550–7.

    Article  CAS  Google Scholar 

  96. Grübel K, Suschka J. Hybrid alkali-hydrodynamic disintegration of waste-activated sludge before two-stage anaerobic digestion process. Environ Sci Pollut Res. 2015;22:7258–70.

    Article  CAS  Google Scholar 

  97. Garuti M, Langone M, Fabbri C, Piccinini S. Monitoring of full-scale hydrodynamic cavitation pretreatment in agricultural biogas plant. Bioresour Technol. 2018;247:599–609.

    Article  CAS  Google Scholar 

  98. Floury J, Legrand J, Desrumaux A. Analysis of a new type of high pressure homogeniser. Part B. study of droplet break-up and recoalescence phenomena. Chem Eng Sci. 2004;59:1285–94.

    Article  CAS  Google Scholar 

  99. Tang SY, Sivakumar M. A novel and facile liquid whistle hydrodynamic cavitation reactor to produce submicron multiple emulsions. Am Inst Chem Eng. 2012:1–13.

  100. Save SS, Pandit AB, Joshi JB. Use of hydrodynamic cavitation for large scale microbial cell disruption. IChemE. 1997;75:41–9.

    Google Scholar 

  101. Wang X, Jia J, Wang Y. Combination of photocatalysis with hydrodynamic cavitation for degradation of tetracycline. Chem Eng J. 2017;315:274–82.

    Article  CAS  Google Scholar 

  102. Montgomery LFR, Bochmann G. Pretreatment of feedstock for enhanced biogas production. IEA Bioenergy. 2014:1–20.

  103. Langone M, Soldano M, Fabbri C, Pirozzi F, Andreottola G. Anaerobic digestion of cattle manure influenced by swirling jet induced hydrodynamic cavitation. Appl Biochem Biotechnol. 2017;184:1200–18.

    Article  CAS  Google Scholar 

  104. Mohod AV, Gogate PR, Viel G, Firmino P, Giudici R. Intensification of biodiesel production using hydrodynamic cavitation based on high speed homogenizer. Chem Eng J. 2017;316:751–7.

    Article  CAS  Google Scholar 

  105. Kumar KS, Moholkar VS. Conceptual design of a novel hydrodynamic cavitation reactor. Chem Eng Sci. 2007;62:2698–711.

    Article  CAS  Google Scholar 

  106. Gogate PR, Pandit AB. A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res. 2004;8:501–51.

    Article  CAS  Google Scholar 

  107. Kimoto H, Sumita Y. Heat transfer characteristics of a circular cylinder in a conduit under cavitation. Trans JSME. 1986;49:2312–3.

    Article  Google Scholar 

  108. Feng X, Lei H, Deng J, Yu Q, Li H. Chemical Engineering and Processing : Process Intensification Physical and chemical characteristics of waste activated sludge treated ultrasonically. 2009;48:187–94.

  109. Yi C, Lu Q, Wang Y, Wang Y, Yang B. Degradation of organic wastewater by hydrodynamic cavitation combined with acoustic cavitation. Ultrason Sonochem. 2018;43:156–65.

    Article  CAS  Google Scholar 

  110. Cai MQ, Hu JQ, Wells G, Seo Y, Spinney R, Ho SH, et al. Understanding mechanisms of synergy between acidification and ultrasound treatments for activated sludge dewatering: from bench to pilot-scale investigation. Environ Sci Technol. 2018;52:4313–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Autonomous Province of Trento, Italy (Program for the development of Small Medium Enterprise, L6/99, Project n.S155/2013/693264/12.1), and Officine Parisi s.r.l.. The second author was funded by a grant from the Fondazione Caritro, Trento (Young Researcher, Grant 2015). The authors gratefully acknowledge the technical support of Officine Parisi s.r.l. (A. Parisi and F. Parisi) and D. C. W. de Puiseau (Econovation, Germany) during the experimental activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Mancuso.

Ethics declarations

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

● Factors influencing the hydrodynamic cavitation (HC) efficiency.

● Classification of HC mechanisms on degradation of pollutants.

● Methods to evaluate HC efficiency for degradation of pollutants.

● Mathematical models to simulate fluid dynamics into HC devices.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mancuso, G., Langone, M. & Andreottola, G. A critical review of the current technologies in wastewater treatment plants by using hydrodynamic cavitation process: principles and applications. J Environ Health Sci Engineer 18, 311–333 (2020). https://doi.org/10.1007/s40201-020-00444-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-020-00444-5

Keywords

Navigation