Skip to main content
Log in

Recent Advances in Citric Acid Bio-production and Recovery

  • Review Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Citric acid consumption is escalating gradually, witnessing high annual growth rate due to more and more advanced applications coming to light. The present review discusses different aspects of fermentation and effects of various environmental parameters and deals with the potential ways to increase the yield of citric acid to meet the ever-increasing demands of this commercially important organic acid. Different techniques for the hyperproduction of citric acid are continuously being studied from the past few decades and still there is a gap, and hence, there is an obvious need to consider new pragmatic ways to achieve industrially feasible and environmentally sustainable bio-production of citric acid. The utilization of inexpensive agro-industrial wastes and their by-products through solid-state fermentation by existing and genetically engineered strains is a potential route. This review also deals with downstream processing considering the classical and advanced approaches, which also need significant improvement. In situ product recovery method which leads to improved yields and productivity can be further optimized for large-scale production and recovery of citric acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CA:

Citric acid

DP:

Degree of polymerization

GRAS:

Generally recognized as safe

HMF:

Hydroxyl-methyl furfural

ISPR:

In situ product recovery

POC:

Poly(1,8-octanediol-co-citric acid)

SF:

Surface fermentation

SMB:

Simulated moving bed

SmF:

Submerged fermentation

SSF:

Solid-state fermentation

TIC:

Template-induced crystallization

References

  • Adham, N. Z. (2002). Attempts at improving citric acid fermentation by Asperigillus niger in beet–molasses medium. Bioresource Technology, 84, 97–100.

    Google Scholar 

  • Adham, N. Z., Ahmed, E. M., & Refai, H. A. E. (2008). Metabolic inhibitors as stimulating factors for citric acid production. Modelling Measurement & Control C, 69(1), 70–82.

    Google Scholar 

  • Alba-Perez, A. (2001). Enhanced microbial production of natural flavours via in-situ product adsorption. PhD thesis. Swiss Federal Institute of Technology Zurich (ETHZ), Zurich.

  • Alizadeh, H., Teymouri, F., Gilbert, T. I., & Dale, B. E. (2005). Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Applied Biochemistry and Biotechnology, 121–124, 1133–1141.

    Article  Google Scholar 

  • Ambati, P., & Ayyanna, C. (2001). Optimizing medium constituents and fermentation conditions for citric acid production from palmyra jaggery using response surface method. World Journal of Microbiology & Biotechnology, 17, 331–335.

    Article  CAS  Google Scholar 

  • André, F., Andreas, A., Stephan, M., & Gerold, B. (2007). Citric acid production from sucrose using a recombinant strain of the yeast Yarrowia lipolytica. Applied Microbiology and Biotechnology, 75, 1409–1417.

    Article  CAS  Google Scholar 

  • Annadurai, G., Raju, V., Chellapandian, M., & Krishnan, M. R. V. (1996). Citric acid production, part 2: Recovery. Bioprocess Engineering, 16, 13–15.

    Article  CAS  Google Scholar 

  • Anwar, S., Ali, S., & Sardar, A. A. (2009). Citric acid fermentation of hydrolysed raw starch by Aspergillus niger IIB-A6 in stationary culture. Sindh University Research Journal (Science Series), 4(1), 01–08.

    Google Scholar 

  • Ashkan, T. N., Adeli, M., Vossoughi, M. (2010). Poly(citric acid)-block-poly(ethylene glycol) copolymers—New candidates for nanomedicine. Nanomedicine: Nanotechnology, Biology, and Medicine. doi:10.1016/j.nano.2009.11.008.

  • Ates, S., Dingil, N., Bayraktar, E., & Mehmetoglu, U. (2002). Enhancement of citric acid production by immobilized and freely suspended Aspergillus niger using silicone oil. Process Biochemistry, 38, 433–436.

    Article  CAS  Google Scholar 

  • Bal’A, M. F. A., & Marshall, D. L. (1998). Organic acid dipping of catfish fillets: Effect on color, microbial load and Listeria monocytogenes. Journal of Food Protection, 11, 1470–1474.

    Google Scholar 

  • Baniel, A. M., Gonen, D. (1990). Extraction of citric acid from fermentation broth. US 4,994, 609 (Cl. 562 ± 580; C07C51/48), 19 Feb. 1991, Appl. 534,635, 6 pp.

  • Berlin, A., Balakshin, M., Gilkes, N., Kadla, J., Maximenko, V., Kubo, S., et al. (2006). Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations. Journal of Biotechnology, 125, 198–209.

    Article  CAS  Google Scholar 

  • Berovic, M., & Cimerman, A. (1982). Redox potential in submerged citric acid on beet molasses substrate. Applied Microbiology and Biotechnology, 16, 185.

    Article  CAS  Google Scholar 

  • Berovic, M., Cimerman, A., Steiner, W., & Koloni, T. (1991). Submerged citric acid fermentation: Rheological properties of Aspergillus niger broth in a stirred tank reactor. Applied Microbiology and Biotechnology, 34, 579–581.

    Article  CAS  Google Scholar 

  • Berovic, M., Koloini, T., Olsvik, E. S., & Kristiansen, B. (1993). Rheology and morpholical properties of submerged citric acid fermentation broth in stirred-tank and bubble column reactors. Chemical Engineering Journal, 53, B35–B40.

    CAS  Google Scholar 

  • Blair, G., Staal, P., & Haarmann & Reimer Corporation. (1991). Citric acid. In J. I. Kroschwitz & M. Howe-Grant (Eds.), Encyclopedia of chemical technology (pp. 354–380). New York: Wiley.

    Google Scholar 

  • Briffaud, J., & Engasser, J. M. (1979). Citric acid production from glucose. II. Growth and excretion kinetics in a trickle-flow fermenter. Biotechnology and Bioengineering, 21, 2093–2111.

    Article  CAS  Google Scholar 

  • Broughton, D. B., & Gerhold, C. G. (1961). Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets. US Patent, 2(985), 589.

    Google Scholar 

  • Bruchmann, E. E. (1966). Action of hydrogen peroxide on accumulation of citric acid by Asperigillus niger. Naturwissenschaften, 53, 226–227.

    Article  CAS  Google Scholar 

  • Buchanan, R. L., & Golden, M. A. (1998). Interactions between pH and malic acid concentration on the inactivation of Listeria monocytogenes. Journal of Food Safety, 18, 37–48.

    Article  CAS  Google Scholar 

  • Buque-Taboda, E. M., Straathof, A. J. J., Heijnen, J. J., & vander Wielen, L. A. M. (2006). In situ product recovery (ISPR) by crystallization: basic principles, design, and potential applications in whole-cell biocatalysis. Applied Microbiology and Biotechnology, 71, 1–12.

    Article  CAS  Google Scholar 

  • Carlos, R. S., Vandenberghe, L. P. S., Rodrigues, C., & Pandey, A. (2006). New perspectives for citric acid production and application. Food Technology and Biotechnology, 44(2), 141–149.

    Google Scholar 

  • Chanda, S., Chakrabarty, S., & Matai, S. (1990). Citric acid production in liquid waste from a leaf protein production plant: Effects of sugar and potassium ferrocyanide. Biological Wastes, 34, 77–81.

    Article  CAS  Google Scholar 

  • Chang, V. S., & Holtzapple, M. T. (2000). Fundamental factors affecting enzymatic reactivity. Applied Biochemistry and Biotechnology, 84–86, 5–37.

    Article  Google Scholar 

  • Christopher, H. S., Xuetong, F., Hand, A. P., & Kimberly, B. S. (2003). Effect of citric acid on the radiation resistance of Listeria monocytogenes and frankfurter quality factors. Meat Science, 63, 407–415.

    Article  Google Scholar 

  • Chundakkadu, K. (2005). Solid-state fermentation systems—An overview. Critical Reviews in Biotechnology, 25, 1–30.

    Article  CAS  Google Scholar 

  • Couto, S. R., & Sanroman, M. A. (2006). Application of solid state fermentation to food industry—A review. Journal of Food Engineering, 76, 291–302.

    Article  CAS  Google Scholar 

  • Crolla, A., & Kennedy, K. J. (2001). Optimization of citric acid production from Candida lipolytica Y-1095 using n-paraffin. Journal of Biotechnology, 89, 27–40.

    Article  CAS  Google Scholar 

  • Crolla, A., & Kennedy, K. J. (2004). Fed-batch production of citric acid by Candida lipolytica grown on n-paraffins. Journal of Biotechnology, 110, 73–84.

    Article  CAS  Google Scholar 

  • Currie, J. N. (1917). The citric acid fermentation of A. niger. The Journal of Biological Chemistry, 31, 5.

    Google Scholar 

  • Delgenés, J. P., Penaud, V., & Moletta, R. (2002). Pretreatments for the enhancement of anaerobic digestion of solid wastes, Chapter 8. In J. Mata-Alvarez (Ed.), Biomethanization of the organic fraction of municipal solid wastes (pp. 201–228). London: IWA Publishing.

    Google Scholar 

  • Dilara, O., & Wayne, P. (2007). Fungal generation of organic acids for removal of lead from contaminated soil. Water, Air, and Soil Pollution, 179, 365–380.

    Article  CAS  Google Scholar 

  • Durand, A. (2003). Bioreactor designs for solid state fermentation. Biochemical Engineering Journal, 13, 113–125.

    Article  CAS  Google Scholar 

  • Elzbieta, G. (2008). Effect of operating conditions on biomass growth during citric acid production by solid-state fermentation. Chemical Papers, 62(2), 141–146.

    Article  CAS  Google Scholar 

  • Finogenova, T. V., Morgunov, I. G., Kamzolova, S. V., & Chernyavskaya, O. G. (2005). Organic acid production by the yeast Yarrowia lipolytica: A review of prospects. Applied Biochemistry and Microbiology, 41, 418–425.

    Article  CAS  Google Scholar 

  • Forest Products Laboratory. Techline durability, What’s that in pressure-treated wood. United States Department of Agriculture. http://www.fpl.fs.fed.us/.

  • Forster, A. (2007). Citric acid production from sucrose using a recombinant strain of the yeast Yarrowia lipolytica. Applied Microbiology and Biotechnology, 75, 1409–1417.

    Article  CAS  Google Scholar 

  • Francielo, V., Patricia, M., & Fernanda, S. A. (2008). Apple pomace: A versatile substrate for biotechnological applications. Critical Reviews in Biotechnology, 28, 1–12.

    Article  CAS  Google Scholar 

  • Friesen, D. T., Babcock, W. C., Brose, D. J., & Chambers, A. R. (1991). Recovery of citric acid from fermentation beer using supported-liquid membranes. Journal of Membrane Science, 56, 127.

    Article  CAS  Google Scholar 

  • Gao, J., Crapo, P. M., & Wang, Y. (2006). Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering. Tissue Engineering, 12(4), 917–925.

    Article  CAS  Google Scholar 

  • Gaspar, M., Kalman, G., & Reczey, K. (2007). Corn fiber as a raw material for hemicellulose and ethanol production. Process Biochemistry, 42, 1135–1139.

    Article  CAS  Google Scholar 

  • Gehrig, I., Bart, H. J., Anke, T., & Germerdonk, R. (1998). Influence of morphology and rheology on the production characteristics of the basidiomycete Cyathus striatus. Biotechnology and Bioengineering, 59, 525–533.

    Article  CAS  Google Scholar 

  • Gluszcz, P., Jamroz, T., Sencio, B., & Ledakowicz, S. (2004). Bioprocess and Biosystems Engineering, 26, 185.

    Article  CAS  Google Scholar 

  • Gowthaman, M. K., Krishna, C., & Moo-Young, M. (2001). Fungal solid state fermentation—An overview. In G. G. Khachatourians & D. K. Arora (Eds.), Applied mycology and biotechnology, vol.1. Agriculture and food productions (pp. 305–352). The Netherlands: Elsevier Science.

    Google Scholar 

  • Grewal, H. S., & Kalra, K. I. (1995). Fungal production of citric acid. Biotechnology Advances, 13, 209–234.

    Article  CAS  Google Scholar 

  • Grimoux, E., & Adams, P. (1880). Synthese de lácide citrique. Comptes Rendus Hebdomadaires Des SeÂances De l'AcadeÂmie Des Sciences, 90, 1252.

    Google Scholar 

  • Guillermo, A., Jian, Y. and Ryan, H. (2010). New biodegradable biocompatible citric acid nano polymers for cell culture growth & implantation engineered by Northwestern University Scientists. Nano patents and innovations, US Patent Application 20090325859

  • Gupta, J. K., Heding, L. G., & Jorgensen, O. B. (1976). Effect of sugars, hydrogen ion concentration and ammonium nitrate on the formation of citric acid by Aspergillus niger. Acta Microbiologica Academiae Scientiarum Hungaricae, 23, 63–67.

    CAS  Google Scholar 

  • Hang, Y. D., & Woodams, E. E. (1985). Grape pomace: A novel substrate for microbial production of citric acid. Biotechnological Letters, 7, 253–254.

    Article  CAS  Google Scholar 

  • Hang, Y. D., & Woodams, E. E. (1986). A solid state fermentation of apple pomace for citric acid production using Aspergillus niger. Applied Microbiology and Biotechnology, 2(2), 283–287.

    CAS  Google Scholar 

  • Hang, Y. D., & Woodams, E. E. (1998). Production of citric acid from corncobs by Aspergillus niger. Bioresource Technology, 65(3), 251–253.

    Article  CAS  Google Scholar 

  • Hang, Y. D., & Woodams, E. E. (2000). Corn husks: A potential substrate for production of citric acid by Aspergillus niger. Lebensm.-Wiss. u.-Technol., 33, 520–521.

    Article  CAS  Google Scholar 

  • Hang, Y. D., & Woodams, E. E. (2001). Enzymatic enhancement of citric acid production by Aspergillus niger from corn cobs. Lebensm.-Wiss. u.-Technol., 34, 484–486.

    Article  CAS  Google Scholar 

  • Hang, Y. D., Luh, B. S., & Woodams, E. E. (1987). Microbial production of citric acid by solid-state fermentation of kiwi fruit peel. Journal of Food Science, 52, 226–227.

    Article  CAS  Google Scholar 

  • Haq, I., Samina, K., Sikander, A., Hamad, A., Qadeer, M. A., & Rajok, M. I. (2001). Mutation of Aspergillus niger for hyperproduction of citric acid from black strap molasses. World Journal of Microbiology & Biotechnology, 17, 35–37.

    Article  Google Scholar 

  • Haq, I., Sikander, A., Qadeer, M. A., & Iqbal, J. (2002). Effect of copper ions on mould morphology and citric acid productivity by Aspergillus niger using molasses based media. Process Biochemistry, 37, 1085–1090.

    Article  CAS  Google Scholar 

  • Haq, I., Sikander, A., Qadeer, M. A., & Iqbal, J. (2004). Citric acid production by selected mutants of Aspergillus niger from cane molasses. Bioresource Technology, 93, 125–130.

    Article  CAS  Google Scholar 

  • Haq, I., Sikander, A., Qadeer, M. A., & Javed, I. (2003). Stimulatory effect of alcohols (methanol and ethanol) on citric acid productivity by a 2-deoxy d-glucose resistant culture of Aspergillus niger GCB-47. Bioresource Technology, 86, 227–233.

    Article  Google Scholar 

  • Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10–18.

    Article  CAS  Google Scholar 

  • Henzler, J. H., & Schafer, E. E. (1987). Viscose undelastische eigenschaften von fermentationslosungen. Chem.-Ing.-Tech, 59, 94044.

    Article  Google Scholar 

  • Hildegard, K., Rumia, G., & Yigal, H. (1981). Citric acid fermentation by Aspergillus niger on low sugar concentrations and cotton waste. Applied and Environmental Microbiology, 42(1), 1–4.

    Google Scholar 

  • Holker, U., Hofer, M., & Lenz, J. (2004). Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Applied Microbiology and Biotechnology, 64(2), 175–186.

    Article  CAS  Google Scholar 

  • Hon, D. N. S., & Shiraishi, N. (2001). Wood and cellulosic chemistry (2nd ed.). New York: Marcel Dekker.

    Google Scholar 

  • Hossain, M., Brooks, J. D., & Maddox, I. S. (1984). The effect of the sugar source on citric acid production by A. niger. Applied Microbiology and Biotechnology, 19, 393–397.

    Article  CAS  Google Scholar 

  • Ivan, D., Namita, R., Choudhury, Naba, K., & Dutta, S. K. (2009). Synthesis and characterization of novel citric acid-based polyester elastomers. Polymer, 50, 1682–1691.

    Article  CAS  Google Scholar 

  • Jae-Kwan, H., Jung-Sun, C., Chul-Jin, K., & Chong-Tai, K. (1998). Solubilization of apple pomace by extrusion. Journal of Food Processing and Preservation, 22, 477–491.

    Article  Google Scholar 

  • Jayanta, S., Jun, T. B., Jong, P. P., Chi, H. S., & Jong, W. Y. (2001). Effect of substrate concentration on broth rheology and fungal morphology during exo-biopolymer production by Paecilomyces japonica in a batch bioreactor. Enzyme and Microbial Technology, 29, 392–399.

    Article  Google Scholar 

  • Jianlong, W. (1998). Improvement of citric acid production by Aspergillus niger with addition of phytate to beet molasses. Bioresource Technology, 65, 243–245.

    Article  Google Scholar 

  • Jianlong, W. (2000). Enhancement of citric acid production by Aspergillus niger using n-dodecane as an oxygen-vector. Process Biochemistry, 35, 1079–1083.

    Article  Google Scholar 

  • Jianlong, W., & Ping, L. (1997). Phytate as a stimulator of citric acid production by Aspergillus niger. Process Biochemistry, 33, 313–316.

    Article  Google Scholar 

  • Jianlong, W., Xianghua, W., & Ding, Z. (2000). Production of citric acid from molasses integrated with in situ product separation by ion-exchange resin adsorption. Bioresource Technology, 75, 231–234.

    Article  CAS  Google Scholar 

  • Jinglan, Wu, Qijun, P., Wolfgang, A., & Mirjana, M. (2009). Model-based design of a pilot-scale simulated moving bed for purification of citric acid from fermentation broth. Journal of Chromatography A, 1216, 8793–8805.

    Article  CAS  Google Scholar 

  • Juang, R. S., & Chou, T. C. (1996). Sorption of citric acid from aqueous solutions by macroporous resins containing a tertiary amine equilibria. Separation Science and Technology, 31, 1409.

    Article  CAS  Google Scholar 

  • Jun, Y., Jibin, Z., Jin, H., Ziduo, L., & Ziniu, Y. (2009). Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresource Technology, 100(2), 903–908.

    Article  CAS  Google Scholar 

  • Kamzolova, S. V., Finogenova, T. V., Lunina, Y. N., Perevoznikova, O. A., Minachova, L. N., & Morgunov, I. G. (2007). Characteristics of the growth on rapeseed oil and synthesis of citric and isocitric acids Yarrowia lipolytica yeasts. Microbiology, 76, 20–24.

    Google Scholar 

  • Kang, Y., Yang, J., Khan, S., Anissian, L., & Ameer, G. A. (2006a). Journal of Biomed Mater Research, Part A, 77A(2), 331–339.

    Article  CAS  Google Scholar 

  • Kang, Y., Yang, J., Khan, S., Anissian, L., & Ameer, G. A. (2006b). A new biodegradable polyester elastomer for cartilage tissue engineering. Journal of Biomedical Materials Research, Part A, 77A(2), 331–339.

    Article  CAS  Google Scholar 

  • Kapoor, K. K., Chaudhari, K., & Tauro, P. (1987). In G. Reed (Ed.), Presscott and Dunn’s, industrial microbiology (4th ed., pp. 709–739). West Port: AVI Publishing.

    Google Scholar 

  • Karklin, R., Ramina, L., Raso, R. (1984). Factors affecting the isolation of Ca-citrate from fermentation solution of n-alkanes. Biosint. Oksikilot Ketokislot Mikroorg, pp. 43–51

  • Karthikeyan, A., & Sivakumar, N. (2010). Citric acid production by koji fermentation using banana peel as a novel substrate. Bioresource Technology, 101(14), 5552–5556.

    Article  CAS  Google Scholar 

  • Kaur, G., Gupta, S., Prakash, R. & Prakash, N. T. (2004). Transformation and generation of silver chloride crystals by Aspergillus terricola. Proc. Trends in Nanotechnology, Segovia, Spain.

  • Kim, S., & Holtzapple, M. T. (2006). Effect of structural features on enzyme digestibility of corn stover. Bioresource Technology, 97, 583–591.

    Article  CAS  Google Scholar 

  • Kim, T. H., & Lee, Y. Y. (2005). Pretreatment of corn stover by soaking in aqueous ammonia. Applied Biochemistry and Biotechnology, 121–124, 1119–1132.

    Article  Google Scholar 

  • Krishna, C. (1999). Production of bacterial cellulases by solid state bioprocessing of banana wastes. Bioresource Technology, 69, 231–239.

    Article  CAS  Google Scholar 

  • Krishna, C., & Chandrasekaran, M. (1995). Economic utilization of cabbage wastes through solid state fermentation by native microflora. Journal of Food Science and Technology, 32, 199–201.

    Google Scholar 

  • Krishna, C., & Chandrasekaran, M. (1996). Banana waste as substrate for α-amylase production by Bacillus subtilis (CBTK 106) under solid-state fermentation. Applied Microbiology and Biotechnology, 46, 106–111.

    Article  CAS  Google Scholar 

  • Krishna, C., & Nokes, S. E. (2001). Influence of inoculum size on phytase production and growth in solid state fermentation by Aspergillus niger. Transactions of the ASAE, 44, 1031–1036.

    CAS  Google Scholar 

  • Kuforiji, O. O., Kuboye, A. O., & Odunfa, S. A. (2010). Orange and pineapple wastes as potential substrates for citric acid production. International Journal of Plant Biology, 1, e4.

    Google Scholar 

  • Kulprathipanja, S. (1990). Separation of citric acid from fermentation broth. European Patent EP 0 324 210 B1.

  • Kumar, D., Jain, V. K., Shanker, G., & Srivastava, A. (2003). Citric acid production by solid state fermentation using sugarcane bagasse. Process Biochemistry, 38, 1731–1738.

    Article  CAS  Google Scholar 

  • Kunas, K. T., & Papourtsakis, E. T. (1990). Damage mechanisms of suspended animal cells in agitated bioreactors with and without bubble entainment. Biotechnology and Bioengineering, 36, 476–483.

    Article  CAS  Google Scholar 

  • Kurbanoglu, E. B., & Kurbanoglu, N. I. (2004). Ram horn peptone as a source of citric acid production by Aspergillus niger, with a process. Journal of Industrial Microbiology & Biotechnology, 31, 289–294.

    Article  CAS  Google Scholar 

  • Larroche, C. (1996). Microbial growth and sporulation behaviour in solid state fermentation. Journal of Scientific and Industrial Research, 55, 408–423.

    CAS  Google Scholar 

  • Laser, M., Schulman, D., Allen, S. G., Lichwa, J., Antal, M. J., Jr., & Lynd, L. R. (2002). A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresource Technology, 81, 33–44.

    Article  CAS  Google Scholar 

  • Leangon, S., Maddox, I. S., & Brooks, J. D. (2000). A proposed biochemical mechanism for citric acid accumulation by Aspergillus niger Yang no. 2 growing in solid state fermentation. World Journal of Microbiology & Biotechnology, 16, 271–275.

    Article  CAS  Google Scholar 

  • Lee, S. H., Teramoto, Y., Tanaka, N., Endo, T. (2007). Improvement of enzymatic saccharification of woody biomass by nano-fibrillation using extruder. The 57th Annual Meeting of The Japan Wood Research Society.

  • Legisa, M., Cimerman, A., & Sterle, M. (1981). Germination of Asperigillus niger in a high citric acid yielding medium. FEMS Microbiology Letters, 11, 149–152.

    Article  Google Scholar 

  • Lesniak, W., Pietkiewicz, J., & Podgorski, W. (2002). Citric acid fermentation from starch and dextrose syrups by a trace metal resistant mutant of Aspergillus niger. Biotechnological Letters, 24, 1065–1067.

    Article  CAS  Google Scholar 

  • Levente, K., & Christian, P. K. (2003). Aspergillus niger citric acid accumulation: Do we understand this well working black box? Applied Microbiology and Biotechnology, 61, 189–196.

    Google Scholar 

  • Levinson, W. E., Kurtzman, C. P., & Kuo, T. M. (2007). Characterization of Yarrowia lipolytica and related species for citric acid production from glycerol. Enzyme and Microbial Technology, 41, 292–295.

    Article  CAS  Google Scholar 

  • Liu, C., & Wyman, C. E. (2003). The effect of flow rate of compressed hot water on xylan, lignin and total mass removal from corn stover. Industrial and Engineering Chemistry Research, 42, 5409–5416.

    Article  CAS  Google Scholar 

  • Lonsane, B. K., Saucedo-Castaneda, S., Raimbault, M., Roussos, S., Viniegra-Gonzalez, G., Ghildyal, N. P., et al. (1992). Scale-up strategies for solid state fermentation systems. Process Biochemistry, 27, 259–273.

    Article  CAS  Google Scholar 

  • Lu, M., Brooks, J. D., & Maddox, I. S. (1997). Citric acid production by solid-state fermentation in a packed-bed reactor using Aspergillus niger. Enzyme and Microbial Technology, 21, 392–397.

    Article  CAS  Google Scholar 

  • Luo, G. S., Shan, X. Y., Qi, X., & Lu, Y. C. (2004). Two-phase electro-electrodialysis for recovery and concentration of citric acid. Separation and Purification Technology, 38, 265.

    Article  CAS  Google Scholar 

  • Lye, G. J. (1999). Application of in situ product removal techniques to biocatalytic processes. Trends in Biotechnology, 17, 395–402.

    Article  CAS  Google Scholar 

  • Macris, B. J. (1975). Citric acid from purified carob sugars. Biotechnology and Bioengineering, 17, 1373–1374.

    Article  CAS  Google Scholar 

  • Maddox, I. S., Hossain, M., & Brooks, J. D. (1986). The effect of methanol on citric acid production from galactose by A. niger. Applied Microbiology and Biotechnology, 23, 203–205.

    Article  CAS  Google Scholar 

  • Magnuson, J. K., & Lasure, L. L. (2004). Organic acid production by filamentous fungi. In J. S. Tkacz & L. Lange (Eds.), Advances in fungal biotechnology for industry, agriculture, and medicine (pp. 307–340). New York: Kluwer.

    Google Scholar 

  • Majolli, M. V. I., & Aguirre, S. N. (1999). Effect of trace metals on the cell morphology, enzymic activity and citric acid production in a strain of Aspergillus wentii. Revista Argentina de Microbiología, 31, 65–71.

    CAS  Google Scholar 

  • Makri, A., Fakas, S., & Aggelis, G. (2010). Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures. Bioresource Technology, 101, 2351–2358.

    Article  CAS  Google Scholar 

  • Maria, K., & Wladyslaw, L. (1989). Effects of medium purity on submerged citric acid fermentation yield. Acta Alimentaria, 15, 97–105.

    Google Scholar 

  • Mattey, M. (1999). Biochemistry of citric acid production by yeasts. In B. Kristiansen, M. Mattey, & J. Linden (Eds.), Citric acid biotechnology (pp. 33–54). London: Taylor and Francis.

    Google Scholar 

  • Medeiros, A. B. P., Pandey, A., Renato, J. S. F., Christen, P., & Soccol, C. R. (2000). Optimization of the production of aroma compounds by Kluyveomyces marxianus in solid-state fermentation using factorial design and response surface methodology. Biochemical Engineering Journal, 6, 33–39.

    Article  CAS  Google Scholar 

  • Michaels, J. D., & Papoutsakis, E. T. (1990). Polyvinyl alcohol and polyethylene glycol as protectants against fluid-mechanical injury of freely suspended animal cell (CRL 8018). Journal of Biotechnology, 19, 241–258.

    Article  Google Scholar 

  • Michaels, J. D., Petersen, J. F., Mclntire, L. V., & Papoutsakis, E. T. (1991). Protection mechanisms of freely suspended animal cells (CRL 8018) from fluid-mechanical injury. Viscometeric and bioreactor studies using serum, Pluronic F68 and polyethylene glycol. Biotechnology and Bioengineering, 38, 169–180.

    Article  CAS  Google Scholar 

  • Milsom, P. E., & Meers, J. L. (1985). Citric acid. In M. Moo-Young (Ed.), Comprehensive biotechnology, vol. 3 (pp. 665–680). Oxford: Pergamon.

    Google Scholar 

  • Minceva, M., & Rodrigues, A. E. (2005). Two-level optimization of an existing SMB for p-xylene separation. Computers & Chemical Engineering, 29, 2215.

    Article  CAS  Google Scholar 

  • Mitchell, D., & Berovic, M. (1998). Solid state fermentation. In M. Berovic (Ed.), Bioprocess engineering course (pp. 128–166). Ljubljana: National Institute of Chemistry.

    Google Scholar 

  • Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., et al. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  • Mourya, S., & Jauhri, K. S. (2000). Production of citric acid from starch-hydrolysate by Aspergillus niger. Microbiological Research, 155, 37–44.

    CAS  Google Scholar 

  • Moyer, A. J. (1953). Effect of alcohol on the mycological production of citric acid in surface and submerged culture, 1. Nature of alcohol effect. Applied Microbiology, 1, 1–7.

    CAS  Google Scholar 

  • Nadeem, A., Syed, Q., Baig, S., Irfan, H., & Nadeem, M. (2010). Enhanced production of citric acid by Aspergillus niger M-101 using lower alcohols. Turkish Journal of Biochemistry, 35(1), 7–13.

    CAS  Google Scholar 

  • Negro, M. J., Manzanares, P., Oliva, J. M., Ballesteros, I., & Ballesteros, M. (2003). Changes in various physical chemical parameters of Pinus pinaster wood after steam explosion pretreatment. Biomass and Bioenergy, 25, 301–308.

    Article  CAS  Google Scholar 

  • Nickelson, N., & Schmidt, C. (1999). Taking the hysteria out of Listeria: The mechanics of Listeria and strategies to find it. Food Quality, 6, 28–34.

    Google Scholar 

  • Pandey, A. (2003). Solid-state fermentation. Biochemical Engineering Journal, 13, 81–84.

    Article  CAS  Google Scholar 

  • Pandey, A., Benjamin, S., Soccol, C. R., Nigam, P., Krieger, N., & Soccol, V. T. (1999). The realm of microbial lipases in biotechnology. Biotechnology and Applied Biochemistry, 29, 119–131.

    CAS  Google Scholar 

  • Pandey, A., Soccol, C. R., & Mitchell, D. (2000). New developments in solid state fermentation: I—bioprocesses and products. Process Biochemistry, 35, 1153–1169.

    Article  CAS  Google Scholar 

  • Pandey, A., Soccol, C. R., Rodriguez-Leon, J. A., & Nigam, P. (2001). Solid-state fermentation in biotechnology—Fundamentals and applications (pp. 100–221). New Delhi: Asiatech.

    Google Scholar 

  • Papagianni, M. (2007). Advances in citric acid fermentation by Aspergillus niger: Biochemical aspects, membrane transport and modeling. Biotechnology Advances, 25, 244–263.

    Article  CAS  Google Scholar 

  • Papagianni, M., Mattey, B., & Kristiansen. (1999). The influence of glucose concentration on citric acid production and morphology of Aspergillus niger in batch and culture. Enzyme and Microbial Technology, 25, 710–717.

    Article  CAS  Google Scholar 

  • Papanikolaou, S. (2006). Influence of glucose and saturated free fatty acid mixtures on citric acid and lipid production by Yarrowia lipolytica. Current Microbiology, 52, 134–142.

    Article  CAS  Google Scholar 

  • Papanikolaou, S., & Aggelis, G. (2003). Modelling aspects of the biotechnological valorization of raw glycerol: Production of citric acid by Yarrowia lipolytica and 1, 3-propanediol by Clostridium butyricum. Journal of Chemical Technology and Biotechnology, 78, 542–547.

    Article  CAS  Google Scholar 

  • Papanikolaou, S., & Aggelis, G. (2009). Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica. Lipid Technology, 21, 83–87.

    Article  CAS  Google Scholar 

  • Papanikolaou, S., Muniglia, L., Chevalot, I., Aggelis, G., & Mare, I. (2002). Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. Journal of Applied Microbiology, 92, 737–744.

    Article  Google Scholar 

  • Partos, L. (2005). ADM closes citric acid plant as Chinese competition bites. Food Navigator. http://www.foodnavigator-usa.com/news/ng.asp?id=62537-adm-citric-acid-acidulant.

  • Pazouki, M., & Panda, T. (1998). Recovery of citric acid—A review. Bioprocess Engineering, 19, 435–439.

    Article  CAS  Google Scholar 

  • Peng, Q.J. (2002). A novel tailor-made tertiary PVP resin. Chinese Patent CN 1358707.

  • Pera, L. M., & Callieri, D. A. (1997). Influence of calcium on fungal growth, hyphal morphology and citric acid production in Aspergillus niger. Journal of Technology, 42, 551–556.

    CAS  Google Scholar 

  • Pinto, R. T. P., Lintomen, L., Broglio, M. I. (2002). Presented at the 12th Symposium of Computer Aided Process Engineering (ESCAPE-12), The Hague, The Netherlands, 26–29, Extended Abstracts, p. 313.

  • Qiu, H., Yang, J., Kodali, P., Koh, J., & Ameer, G. A. (2006). A citric acid-based hydroxyapatite composite for orthopedic implants. Biomaterials, 27(34), 5845–5854.

    Article  CAS  Google Scholar 

  • Raimbault, M. (1998). General and microbiological aspects of solid substrate fermentation. Electronic Journal of Biotechnology, 1, 1–27.

    Article  Google Scholar 

  • Ramachandran, S., Patel, A. K., Nampoothiri, K. M., Francis, F., Nagy, V., Szakacs, G., et al. (2004). Coconut oil cake—A potential raw material for the production of α-amylase. Bioresource Technology, 93, 169–174.

    Article  CAS  Google Scholar 

  • Ramos, L. P. (2003). The chemistry involved in the steam treatment of lignocellulosic materials. Química Nova, 26(6), 863–871.

    Article  CAS  Google Scholar 

  • Rane, K. D., & Sims, K. A. (1994). Oxygen up-take and citric acid production by Candida lipolytica Y1095. Biotechnology and Bioengineering, 43, 131–137.

    Article  CAS  Google Scholar 

  • Rivas, B., Torrado, A., Torre, P., Converti, A., & Dominguez, J. M. (2008). Submerged citric acid fermentation on orange peel autohydrolysate. Journal of Agricultural and Food Chemistry, 56, 2380–2387.

    Article  CAS  Google Scholar 

  • Robin, N., Larry, M., John, F., Jim, S., Jerry, M. (1995). An investigation of the chemistry of citric acid in military soldering applications. Naval Air Warfare-Center Weapons Div China Lake CA., Report no. A240592.

  • Robinson, T., & Nigam, P. (2003). Bioreactor design for protein enrichment of agricultural residues by solid state fermentation. Biochemical Engineering Journal, 13, 197–203.

    Article  CAS  Google Scholar 

  • Rohr, M., Kubicek, C. P., & Kominek, J. (1996). Citric acid. In H.-J. Rehm & G. Reed (Eds.), Biotechnology, vol. 6 (2nd ed., pp. 307–345). Weinheim: Wiley-VCH.

    Google Scholar 

  • Romero-Gomez, S. J., Augur, C., & Viniegra-Gonzalez, G. (2000). Invertase production by Aspergillus niger in submerged and solid-state fermentation. Biotechnology Letters, 22, 1255–1258.

    Article  CAS  Google Scholar 

  • Roukas, T. (1999). Citric acid production from carob pod by solid-state fermentation. Enzyme and Microbial Technology, 24, 54–59.

    Article  CAS  Google Scholar 

  • Roukas, K., & Kotzekidou, P. (1986). Production of citric acid from brewery waste by surface fermentation using A. niger. Journal of Food Science, 51, 225–226.

    Article  CAS  Google Scholar 

  • Roukas, K., & Kotzekidou, P. (1987). Influence of some trace metals and stimulants on citric acid production from brewery waste by A. niger. Enzyme and Microbial Technology, 9, 391–394.

    Article  Google Scholar 

  • Roukas, K., & Kotzekidou, P. (1997). Pretreatment of date syrup to increase citric acid production. Enzyme and Microbial Technology, 21, 273–276.

    Article  CAS  Google Scholar 

  • Rugsaseel, S., Morikawa, S., Kirimura, S., & Usami, S. (1995). Stimulation of citric acid production in Asperigillus niger by addition of viscous substances in shake culture. Applied Microbiology and Biotechnology, 42, 839–843.

    Article  CAS  Google Scholar 

  • Rymowicz, W., Fatykhova, A. R., Kamzolova, S. V., Rywińska, A., & Morgunov, I. G. (2010). Citric acid production from glycerol-containing waste of biodiesel industry by Yarrowia lipolytica in batch, repeated batch, and cell recycle regimes. Applied Microbiology and Biotechnology, 87, 971–979. doi:10.1007/s00253-010-2561-z.

    Article  CAS  Google Scholar 

  • Saha, M. L., Sakai, Y., & Takahashi, F. (1999). Citric acid fermentation by magnetic drum contactor. Journal of Bioscience and Bioengineering, 8, 369–394.

    Google Scholar 

  • Samuel., S. J. (2005). Biogenesis of metal nanoparticles. PhD thesis, Department of Biotechnology & Environmental Sciences, Thapar Institute of Engineering & Technology.

  • Sato, K., & Sudo, S. (1999). Small scale solid state fermentations. In A. L. Demain & J. E. Davies (Eds.), Manual of industrial microbiology and biotechnology (2nd ed., pp. 61–79). Washington: ASM.

    Google Scholar 

  • Schügerl, K. (2000). Integrated processing of biotechnology products. Biotechnology Advances, 18, 581–599.

    Article  Google Scholar 

  • Schügerl, K., & Hubbuch, J. (2005). Integrated bioprocesses. Current Opinion in Microbiology, 8, 294–300.

    Article  CAS  Google Scholar 

  • Schuster, E., Dunn-Coleman, N., Frisvad, J. C., & Van Dijck, P. W. M. (2002). On the safety of Aspergillus niger—A review. Applied Microbiology and Biotechnology, 59, 426–435.

    Article  CAS  Google Scholar 

  • Seraphim, P., Maria, G. P., Stylianos, F., Michael, K., & George, A. (2008). Citric acid production by Yarrowia lipolytica cultivated on olive-mill wastewater-based media. Bioresource Technology, 99, 2419–2428.

    Article  CAS  Google Scholar 

  • Seung-Hwan, L., Yoshikuni, T., & Takashi, E. (2009). Enzymatic saccharification of woody biomass micro/nanofibrillated by continuous extrusion process I—Effect of additives with cellulose affinity. Bioresource Technology, 100(1), 275–279.

    Article  CAS  Google Scholar 

  • Shankaranand, V. S., & Lonsane, B. K. (1993). Sugarcane-pressmud as a novel substrate for production of citric acid by solid-state fermentation. World Journal of Microbiology & Biotechnology, 9, 377–380.

    Article  CAS  Google Scholar 

  • Shankaranand, V. S., & Lonsane, B. K. (1994). Coffee husk: An inexpensive substrate for production of citric acid by Aspergillus niger in a solid-state fermentation. World Journal of Microbiology & Biotechnology, 10, 165–168.

    Article  CAS  Google Scholar 

  • Shishikura, A., Takahashi, H., & Supercrit, J. (1992). Citric acid purification process using compressed carbon dioxide. Fluids, 5, 303.

    CAS  Google Scholar 

  • Shojaosadati, S. A., & Babaeipour, V. (2002). Citric acid production from apple pomace in multi-layer packed bed solid-state bioreactor. Process Biochemistry, 37, 909–914.

    Article  CAS  Google Scholar 

  • Sikander, A., & Haq, I. (2005). Role of different additives and metallic micro minerals on the enhanced citric acid production by Aspergillus niger MNNG-115 using different carbohydrate materials. Journal of Basic Microbiology, 45(1), 3–11.

    Article  CAS  Google Scholar 

  • Singhania, R. R., Patel, A. K., Soccol, C. R., & Pandey, A. (2009). Recent advances in solid-state fermentation. Biochemical Engineering Journal, 44, 13–18.

    Article  CAS  Google Scholar 

  • Soccol, C. R., & Vandenberghe, L. P. S. (2003). Overview of applied solid-state fermentation in Brazil. Biochemical Engineering Journal, 13, 205–218.

    Article  CAS  Google Scholar 

  • Soccol, C. R., Vandenberghe, L. P. S., Rodrigues, C., & Pandey, A. (2006). New prospectives for citric acid production and application. Food Technology and Biotechnology, 44, 141–149.

    CAS  Google Scholar 

  • Srivasta, K., & Kamal, S. (1979). Citric acid fermentation by Aspergillus niger. Indian Journal of Microbiology, 19, 145–149.

    Google Scholar 

  • Stark, D., & Von, S. U. (2003). In situ product removal (ISPR) in whole cell biotechnology during the last 20 years. Advances in Biochemical Engineering/Biotechnology, 80, 149–175.

    Article  CAS  Google Scholar 

  • Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  • Sundback, C. A., Shyu, J. Y., Wang, Y., Faquin, W. C., Langer, R. S., & Vacanti, J. P. (2005). Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials, 26(27), 5454–5464.

    Article  CAS  Google Scholar 

  • Suryanarayan, S. (2003). Current industrial practice in solid state fermentations for secondary metabolite production: The Biocon India experience. Biochemical Engineering Journal, 13, 189–195.

    Article  CAS  Google Scholar 

  • Susana, R. C., & Sanroman, M. A. (2006). Application of solid-state fermentation to food industry—A review. Journal of Food Engineering, 76, 291–302.

    Article  CAS  Google Scholar 

  • Suzelle, B., Jun, S. K., Li, W., & Jin-Woo, K. (2009). Optimization of citric acid production by Aspergillus niger NRRL 567 grown in a column bioreactor. Korean Journal of Chemical Engineering, 26(2), 422–427.

    Article  Google Scholar 

  • Taherzadeh, M. J., & Karimi, K. (2007). Acid-based hydrolysis processes for ethanol from lignocellulosic materials: A review. Bioresources, 2, 472–499.

    CAS  Google Scholar 

  • Takatsuji, W., & Yoshiba, H. (1998). Adsorption of organic acids on weakly basic ion exchanger: Equilibria for binary systems. AIChE Journal, 44, 1216.

    Article  CAS  Google Scholar 

  • Takatsuji, W., & Yoshida, H. (1997). Adsorption of organic acids on weakly basic ion exchanger: Equilibria. Journal of Chemical Engineering Japan, 30, 396.

    Article  CAS  Google Scholar 

  • Tengerdy, R. P., & Szakacs, G. (2003). Bioconversion of lignocelluloses in solid substrate fermentation. Biochemical Engineering Journal, 13, 169–179.

    Article  CAS  Google Scholar 

  • Thompson, J. C., & He, B. (2006). Characterization of crude glycerol from biodiesel production from multiple feedstocks. Applied Engineering in Agriculture, 22(2), 261–265.

    Google Scholar 

  • Tran, C. T., & Mitchell, D. A. (1995). Pineapple waste—A novel substrate for citric acid production by solid-state fermentation. Biotechnology letters, 17(10), 1107–10.

    Article  CAS  Google Scholar 

  • Tran, C. T., Sly, L. I., & Mitchell, D. A. (1998). Selection of a strain of Aspergillus for the production of citric acid from pineapple waste in solid-state fermentation. World Journal of Microbiology and Biotechnology, 14, 399–404.

    Article  CAS  Google Scholar 

  • Trilli, A. (1986). Scale up of fermentation. In A. L. Demain & N. A. Solomon (Eds.), Industrial microbiology and biotechnology (pp. 227–307). Washington: American Society of Microbiology.

    Google Scholar 

  • Ujcova, E., Fencl, Z., Musilkova, M., & Seichert, L. (1980). Dependence of release of nucleotides from fungi on fermentor turbine speed. Biotechnology and Bioengineering, 22, 237–241.

    Article  CAS  Google Scholar 

  • Urbanus, J., Roelands, C. P. M., Ter-Horst, J. H., Verdoes, D., & Jansens, P. J. (2008). Screening of templates that promote crystallization. Food and Bioproducts Processing, 86, 116–121.

    Article  CAS  Google Scholar 

  • Usami, S., & Taketomi, N. (1961). Use of methyl alcohol as a promotive agent in citric acid fermentation. Hakko-Kyokaishi, 19, 435–442.

    CAS  Google Scholar 

  • Vandenberghe, L. P. S. (2000). Development of process for citric acid production by solid-state fermentation using cassava agro-industrial residues. PhD thesis, Université de Technologie de Compiègne, Compiègne, France, p. 205.

  • Vandenberghe, L. P. S., Soccol, C. R., Pandey, A., & Lebeault, J. M. (1999). Review: Microbial production of citric acid. Brazilian Archives of Biology and Technology, 42, 263–276.

    CAS  Google Scholar 

  • Vandenberghe, L. P. S., Soccol, C. R., Pandey, A., & Lebeault, J. M. (2000). Solid-state fermentation for the synthesis of citric acid by Aspergillus niger. Bioresource Technology, 74, 175–178.

    Article  CAS  Google Scholar 

  • Vandenberghe, L. P. S., Soccol, C. R., Prado, F. C., & Pandey, A. (2004). Comparison of citric acid production by solid-state fermentation in flask, column, tray and drum bioreactor. Applied Biochemistry and Biotechnology, 118, 1–10.

    Article  Google Scholar 

  • Viesturs, U. F., Aspite, A. F., Laukevies, J. J., Ose, V. P., & Bekers, M. J. (1981). Solid state fermentation of wheat straw with Chaeromium cellulolyticum and Trichoderma lignorum. Biotechnology and Bioengineering Symposium, 11, 359–369.

    CAS  Google Scholar 

  • Von, S. U., & Vander-Wielen, L. A. M. (2003). Process integration challenges in biotechnology. Yesterday, today and tomorrow. Advances in Biochemical Engineering, Biotechnology, 80, IX–XV.

    Google Scholar 

  • Wang, J. (1998). Improvement of citric acid production by Aspergillus niger with addition of phytate to beet molasses. Bioresource Technology, 65, 243–245.

    Article  CAS  Google Scholar 

  • Weast, R. C. (1989). CRC handbook of chemistry and physics, 69th ed., CRC Press, p. 163.

  • Wehmer, C. (1893). Note sur la fermentation Citrique. Bulletin de la SocieÂte chimique de France, 9, 728.

    Google Scholar 

  • Wen, Z., Pyle, D., & Athalye, S. (2009). Glycerol waste from biodiesel manufacturing. In G. Aggelis (Ed.), Microbial conversions of raw glycerol (pp. 1–7). New York: Nova Science.

    Google Scholar 

  • Wenneresten, R. (1980). A new method for the purification of citric acid by liquid–liquid extraction. Proc. Int. Sol. Extr. Conf., 2, 80–87.

    Google Scholar 

  • Wenneresten, R. (1983). The exctraction of citric acid from fermentation broth using a solution of a tertiary amine. Journal of Chemical Technology and Biotechnology, 33B, 85–94.

    Google Scholar 

  • Widiasa, I. N., Sutrisna, P. D., & Wenten, I. G. (2004). Performance of a novel electrodeionization technique during citric acid recovery. Sep. Purif. Technol., 39, 89–97.

    Article  CAS  Google Scholar 

  • Williams, P. J., & Cloete, T. E. (2010). The production and use of citric acid for the removal of potassium from the iron ore concentrate of the Sishen Iron Ore Mine, South Africa. South African Journal of Science, 106(3–4), 1–5.

    Google Scholar 

  • Xie, G., & west, T. P. (2006). Citric acid production by Apergillus niger on wet corn distillers grain. Letters in Applied Microbiology, 43, 269–273.

    Article  CAS  Google Scholar 

  • Xu, B. D., Madrit, C., Rohr, M., & Kubicek, C. P. (1989). The influence of type and concentration of the carbon source on production of citric acid by Aspergillus niger. Applied Microbiology and Biotechnology, 30, 553–558.

    CAS  Google Scholar 

  • Yadav, J. S. (1988). SSF of wheat straw with alcaliphilic Coprinus. Biotechnology and Bioengineering, 31, 414–417.

    Article  CAS  Google Scholar 

  • Yang, J., Motlagh, D., Webb, A. R., & Ameer-Guillermo, A. (2005). Novel biphasic elastomeric scaffold for smalldiameter blood vessel tissue engineering. Tissue Engineering, 11(11–12), 1876–1886.

    Article  CAS  Google Scholar 

  • Yang, J., Webb, A. R., & Ameer, G. A. (2004). Novel citric acid-based biodegradable elastomers for tissue engineering. Advanced Materials, 16(6), 511–516.

    Article  CAS  Google Scholar 

  • Yokoya, F. (1992). Citric acid production. Industrial Fermentation Series, Campinas, SP, Brazil, pp. 1–82.

Download references

Acknowledgements

The authors are sincerely thankful to the Natural Sciences and Engineering Research Council of Canada (Discovery Grant 355254, Canada Research Chair), FQRNT (ENC 125216) and MAPAQ (No. 809051) for financial support. The views or opinions expressed in this article are those of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satinder Kaur Brar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh Dhillon, G., Kaur Brar, S., Verma, M. et al. Recent Advances in Citric Acid Bio-production and Recovery. Food Bioprocess Technol 4, 505–529 (2011). https://doi.org/10.1007/s11947-010-0399-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-010-0399-0

Keywords

Navigation