Skip to main content
Log in

The Interplay of Biomechanical and Biological Changes Following Meniscus Injury

  • Osteoarthritis (MB Goldring and T Griffin, Section Editors)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Meniscus injury often leads to joint degeneration and post-traumatic osteoarthritis (PTOA) development. Therefore, the purpose of this review is to outline the current understanding of biomechanical and biological repercussions following meniscus injury and how these changes impact meniscus repair and PTOA development. Moreover, we identify key gaps in knowledge that must be further investigated to improve meniscus healing and prevent PTOA.

Recent Findings

Following meniscus injury, both biomechanical and biological alterations frequently occur in multiple tissues in the joint. Biomechanically, meniscus tears compromise the ability of the meniscus to transfer load in the joint, making the cartilage more vulnerable to increased strain. Biologically, the post-injury environment is often characterized by an increase in pro-inflammatory cytokines, catabolic enzymes, and immune cells. These multi-faceted changes have a significant interplay and result in an environment that opposes tissue repair and contributes to PTOA development. Additionally, degenerative changes associated with OA may cause a feedback cycle, negatively impacting the healing capacity of the meniscus.

Summary

Strides have been made towards understanding post-injury biological and biomechanical changes in the joint, their interplay, and how they affect healing and PTOA development. However, in order to improve clinical treatments to promote meniscus healing and prevent PTOA development, there is an urgent need to understand the physiologic changes in the joint following injury. In particular, work is needed on the in vivo characterization of the temporal biomechanical and biological changes that occur in patients following meniscus injury and how these changes contribute to PTOA development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Fairbank TJ. Knee joint changes after meniscectomy. J Bone Joint Surg Br. 1948;30B(4):664–70.

    Article  CAS  Google Scholar 

  2. Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials. 2011;32(30):7411–31. https://doi.org/10.1016/j.biomaterials.2011.06.037.

    Article  CAS  Google Scholar 

  3. American Orthopaedic Society for Sports Medicine AAoOS. OKU Orthopaedic Knowledge Update: Sports medicine 2. American Academy of Orthopaedic Surgeons: University of Michigan; 1999.

    Google Scholar 

  4. Adams, BG, Houston, MN, Cameron, KL. The epidemiology of meniscus injury. Sports Med Arthrosc Rev. 2021;29(3):e24–33. https://doi.org/10.1097/JSA.0000000000000329.

  5. Englund M, Guermazi A, Roemer FW, Aliabadi P, Yang M, Lewis CE, et al. Meniscal tear in knees without surgery and the development of radiographic osteoarthritis among middle-aged and elderly persons: the Multicenter Osteoarthritis Study. Arthritis Rheum. 2009;60(3):831–9. https://doi.org/10.1002/art.24383.

    Article  Google Scholar 

  6. Levy IM, Torzilli PA, Warren RF. The effect of medial meniscectomy on anterior-posterior motion of the knee. J Bone Joint Surg Am. 1982;64(6):883–8.

    Article  CAS  Google Scholar 

  7. Fox AJ, Bedi A, Rodeo SA. The basic science of human knee menisci: structure, composition, and function. Sports Health. 2012;4(4):340–51. https://doi.org/10.1177/1941738111429419.

    Article  Google Scholar 

  8. Fukubayashi T, Kurosawa H. The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints. Acta Orthop Scand. 1980;51(6):871–9. https://doi.org/10.3109/17453678008990887.

    Article  CAS  Google Scholar 

  9. Walker PS, Erkman MJ. The role of the menisci in force transmission across the knee. Clin Orthop Relat Res. 1975;109:184–92. https://doi.org/10.1097/00003086-197506000-00027.

    Article  Google Scholar 

  10. Walker PS, Arno S, Bell C, Salvadore G, Borukhov I, Oh C. Function of the medial meniscus in force transmission and stability. J Biomech. 2015;48(8):1383–8. https://doi.org/10.1016/j.jbiomech.2015.02.055.

    Article  Google Scholar 

  11. Liu B, Lad NK, Collins AT, Ganapathy PK, Utturkar GM, McNulty AL, et al. In vivo tibial cartilage strains in regions of cartilage-to-cartilage contact and cartilage-to-meniscus contact in response to walking. Am J Sports Med. 2017;45(12):2817–23. https://doi.org/10.1177/0363546517712506.

    Article  Google Scholar 

  12. Greis PE, Bardana DD, Holmstrom MC, Burks RT. Meniscal injury: I. Basic science and evaluation. J Am Acad Orthop Surg. 2002;10(3):168–76. https://doi.org/10.5435/00124635-200205000-00003.

    Article  Google Scholar 

  13. Binfield PM, Maffulli N, King JB. Patterns of meniscal tears associated with anterior cruciate ligament lesions in athletes. Inj. 1993;24(8):557–61. https://doi.org/10.1016/0020-1383(93)90038-8.

    Article  CAS  Google Scholar 

  14. Maffulli N, Chan KM, Bundoc RC, Cheng JC. Knee arthroscopy in Chinese children and adolescents: an eight-year prospective study. Arthrosc. 1997;13(1):18–23. https://doi.org/10.1016/s0749-8063(97)90205-x.

    Article  CAS  Google Scholar 

  15. De Smet AA, Norris MA, Yandow DR, Quintana FA, Graf BK, Keene JS. MR diagnosis of meniscal tears of the knee: importance of high signal in the meniscus that extends to the surface. AJR Am J Roentgenol. 1993;161(1):101–7. https://doi.org/10.2214/ajr.161.1.8517286.

    Article  Google Scholar 

  16. Jee WH, McCauley TR, Kim JM, Jun DJ, Lee YJ, Choi BG, et al. Meniscal tear configurations: categorization with MR imaging. AJR Am J Roentgenol. 2003;180(1):93–7. https://doi.org/10.2214/ajr.180.1.1800093.

    Article  Google Scholar 

  17. Shakespeare DT, Rigby HS. The bucket-handle tear of the meniscus. A clinical and arthrographic study. J Bone Joint Surg Br. 1983;65(4):383–7. https://doi.org/10.1302/0301-620X.65B4.6874707.

    Article  CAS  Google Scholar 

  18. Pache S, Aman ZS, Kennedy M, Nakama GY, Moatshe G, Ziegler C, et al. Meniscal root tears: current concepts review. Arch Bone Jt Surg. 2018;6(4):250–9.

    Google Scholar 

  19. Poehling GG, Ruch DS, Chabon SJ. The landscape of meniscal injuries. Clin Sports Med. 1990;9(3):539–49.

    Article  CAS  Google Scholar 

  20. Aichroth P. Degenerative meniscal tears. Knee. 1994;1(3):133–84.

    Article  Google Scholar 

  21. Englund M. Meniscal tear—a feature of osteoarthritis. Acta Orthop Scand. 2004;75(sup312):1–45. https://doi.org/10.1080/03008820410002048.

    Article  Google Scholar 

  22. Baker BE, Peckham AC, Pupparo F, Sanborn JC. Review of meniscal injury and associated sports. Am J Sports Med. 1985;13(1):1–4. https://doi.org/10.1177/036354658501300101.

    Article  CAS  Google Scholar 

  23. Thompson WO, Thaete FL, Fu FH, Dye SF. Tibial meniscal dynamics using three-dimensional reconstruction of magnetic resonance images. Am J Sports Med. 1991;19(3):210–5. https://doi.org/10.1177/036354659101900302.

  24. Karia M, Ghaly Y, Al-Hadithy N, Mordecai S, Gupte C. Current concepts in the techniques, indications and outcomes of meniscal repairs. Eur J Orthop Surg Traumatol. 2019;29(3):509–20. https://doi.org/10.1007/s00590-018-2317-5.

    Article  Google Scholar 

  25. Cinque ME, DePhillipo NN, Moatshe G, Chahla J, Kennedy MI, Dornan GJ, et al. Clinical outcomes of inside-out meniscal repair according to anatomic zone of the meniscal tear. Orthop J Sports Med. 2019;7(7):2325967119860806. https://doi.org/10.1177/2325967119860806.

    Article  Google Scholar 

  26. Barber FA, McGarry JE. Meniscal repair techniques. Sports Med Arthrosc Rev. 2007;15(4):199–207. https://doi.org/10.1097/JSA.0b013e3181595bed.

    Article  Google Scholar 

  27. DeHaven KE. Decision-making factors in the treatment of meniscus lesions. Clin Orthop Relat Res. 1990;252:49–54.

    Article  Google Scholar 

  28. Ronnblad E, Barenius B, Engstrom B, Eriksson K. Predictive factors for failure of meniscal repair: a retrospective dual-center analysis of 918 consecutive cases. Orthop J Sports Med. 2020;8(3):2325967120905529. https://doi.org/10.1177/2325967120905529.

    Article  Google Scholar 

  29. Williams RJ 3rd, Warner KK, Petrigliano FA, Potter HG, Hatch J, Cordasco FA. MRI evaluation of isolated arthroscopic partial meniscectomy patients at a minimum five-year follow-up. HSS J. 2007;3(1):35–43. https://doi.org/10.1007/s11420-006-9031-2.

    Article  Google Scholar 

  30. Papalia R, Del Buono A, Osti L, Denaro V, Maffulli N. Meniscectomy as a risk factor for knee osteoarthritis: a systematic review. Br Med Bull. 2011;99:89–106. https://doi.org/10.1093/bmb/ldq043.

    Article  Google Scholar 

  31. Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med. 2007;35(10):1756–69. https://doi.org/10.1177/0363546507307396.

    Article  Google Scholar 

  32. • Ronnblad E, Barenius B, Stalman A, Eriksson K. Failed meniscal repair increases the risk for osteoarthritis and poor knee function at an average of 9 years follow-up. Knee Surg Sports Traumatol Arthrosc. 2021. https://doi.org/10.1007/s00167-021-06442-w. (This longitudinal study found a 5-fold increase in risk for OA with a failed meniscus repair.)

    Article  Google Scholar 

  33. Yao J, Funkenbusch PD, Snibbe J, Maloney M, Lerner AL. Sensitivities of medial meniscal motion and deformation to material properties of articular cartilage, meniscus and meniscal attachments using design of experiments methods. J Biomech Eng. 2006;128(3):399–408. https://doi.org/10.1115/1.2191077.

    Article  Google Scholar 

  34. Wojtys EM, Chan DB. Meniscus structure and function. Instr Course Lect. 2005;54:323–30.

    Google Scholar 

  35. Fox AJS, Bedi A, Rodeo SA. The basic science of human knee menisci: structure, composition, and function. Sports health. 2012;4(4):340–51. https://doi.org/10.1177/1941738111429419.

    Article  Google Scholar 

  36. Nicolas R, Nicolas B, Francois V, Michel T, Nathaly G. Comparison of knee kinematics between meniscal tear and normal control during a step-down task. Clin Biomech (Bristol, Avon). 2015;30(7):762–4. https://doi.org/10.1016/j.clinbiomech.2015.05.012.

    Article  Google Scholar 

  37. Bansal S, Meadows KD, Miller LM, Saleh KS, Patel JM, Stoeckl BD, et al. Six-month outcomes of clinically relevant meniscal injury in a large-animal model. Orthop J Sports Med. 2021;9(11):23259671211035444. https://doi.org/10.1177/23259671211035444.

    Article  Google Scholar 

  38. Bedi A, Kelly NH, Baad M, Fox AJ, Brophy RH, Warren RF, et al. Dynamic contact mechanics of the medial meniscus as a function of radial tear, repair, and partial meniscectomy. J Bone Joint Surg Am. 2010;92(6):1398–408. https://doi.org/10.2106/JBJS.I.00539.

    Article  Google Scholar 

  39. Crema MD, Roemer FW, Felson DT, Englund M, Wang K, Jarraya M, et al. Factors associated with meniscal extrusion in knees with or at risk for osteoarthritis: the Multicenter Osteoarthritis Study. Radiol. 2012;264(2):494–503. https://doi.org/10.1148/radiol.12110986.

    Article  Google Scholar 

  40. Englund M, Roemer FW, Hayashi D, Crema MD, Guermazi A. Meniscus pathology, osteoarthritis and the treatment controversy. Nat Rev Rheumatol. 2012;8(7):412–9. https://doi.org/10.1038/nrrheum.2012.69.

    Article  CAS  Google Scholar 

  41. MacLeod TD, Subburaj K, Wu S, Kumar D, Wyatt C, Souza RB. Magnetic resonance analysis of loaded meniscus deformation: a novel technique comparing participants with and without radiographic knee osteoarthritis. Skeletal Radiol. 2015;44(1):125–35. https://doi.org/10.1007/s00256-014-2022-3.

    Article  Google Scholar 

  42. Patel R, Eltgroth M, Souza R, Zhang CA, Majumdar S, Link TM, et al. Loaded versus unloaded magnetic resonance imaging (MRI) of the knee: effect on meniscus extrusion in healthy volunteers and patients with osteoarthritis. Eur J Radiol Open. 2016;3:100–7. https://doi.org/10.1016/j.ejro.2016.05.002.

    Article  Google Scholar 

  43. Ishii Y, Ishikawa M, Kurumadani H, Hayashi S, Nakamae A, Nakasa T, et al. Increase in medial meniscal extrusion in the weight-bearing position observed on ultrasonography correlates with lateral thrust in early-stage knee osteoarthritis. J Orthop Sci. 2020;25(4):640–6. https://doi.org/10.1016/j.jos.2019.07.003.

    Article  Google Scholar 

  44. • Ishii Y, Nakashima Y, Ishikawa M, Sunagawa T, Okada K, Takagi K, et al. Dynamic ultrasonography of the medial meniscus during walking in knee osteoarthritis. Knee. 2020;27(4):1256–62. https://doi.org/10.1016/j.knee.2020.05.017. (This study used dynamic ultrasonography to measure medial meniscus extrusion in humans during walking.)

    Article  Google Scholar 

  45. Ishii Y, Deie M, Fujita N, Kurumadani H, Ishikawa M, Nakamae A, et al. Effects of lateral wedge insole application on medial compartment knee osteoarthritis severity evaluated by ultrasound. Knee. 2017;24(6):1408–13. https://doi.org/10.1016/j.knee.2017.09.001.

    Article  Google Scholar 

  46. Kartus JT, Russell VJ, Salmon LJ, Magnusson LC, Brandsson S, Pehrsson NG, et al. Concomitant partial meniscectomy worsens outcome after arthroscopic anterior cruciate ligament reconstruction. Acta Orthop Scand. 2002;73(2):179–85. https://doi.org/10.1080/000164702753671777.

    Article  Google Scholar 

  47. Bedi A, Kelly N, Baad M, Fox AJ, Ma Y, Warren RF, et al. Dynamic contact mechanics of radial tears of the lateral meniscus: implications for treatment. Arthrosc. 2012;28(3):372–81. https://doi.org/10.1016/j.arthro.2011.08.287.

    Article  Google Scholar 

  48. • Bansal S, Miller LM, Patel JM, Meadows KD, Eby MR, Saleh KS, et al. Transection of the medial meniscus anterior horn results in cartilage degeneration and meniscus remodeling in a large animal model. J Orthop Res. 2020;38(12):2696–708. https://doi.org/10.1002/jor.24694. (This study utilized a large animal model of detachment of the anterior horn of the medial meniscus to characterize degenerative changes to the meniscus and cartilage at multiple scales across a 3-month period.)

    Article  Google Scholar 

  49. Carter TE, Taylor KA, Spritzer CE, Utturkar GM, Taylor DC, Moorman CT 3rd, et al. In vivo cartilage strain increases following medial meniscal tear and correlates with synovial fluid matrix metalloproteinase activity. J Biomech. 2015;48(8):1461–8. https://doi.org/10.1016/j.jbiomech.2015.02.030.

    Article  Google Scholar 

  50. Maher SA, Wang H, Koff MF, Belkin N, Potter HG, Rodeo SA. Clinical platform for understanding the relationship between joint contact mechanics and articular cartilage changes after meniscal surgery. J Orthop Res. 2017;35(3):600–11. https://doi.org/10.1002/jor.23365.

    Article  CAS  Google Scholar 

  51. Spang RC III, Nasr MC, Mohamadi A, DeAngelis JP, Nazarian A, Ramappa AJ. Rehabilitation following meniscal repair: a systematic review. BMJ Open Sport Exerc Med. 2018;4(1):e000212. https://doi.org/10.1136/bmjsem-2016-000212.

    Article  Google Scholar 

  52. McNulty AL, Guilak F. Mechanobiology of the meniscus. J Biomech. 2015;48(8):1469–78. https://doi.org/10.1016/j.jbiomech.2015.02.008.

    Article  Google Scholar 

  53. • Andress BD, Irwin RM, Puranam I, Hoffman BD, McNulty AL. A tale of two loads: modulation of IL-1 induced inflammatory responses of meniscal cells in two models of dynamic physiologic loading. Front Bioeng Biotechnol. 2022;10: 837619. https://doi.org/10.3389/fbioe.2022.837619. (This study compared two models of meniscus mechanical stimulation, dynamic compression of tissue explants and cyclic tensile stretch of isolated meniscus cells, to identify conserved responses to mechanical loading. RNA sequencing results from both models showed significant modulation of inflammation-related pathways with mechanical stimulation.)

    Article  Google Scholar 

  54. Upton ML, Chen J, Guilak F, Setton LA. Differential effects of static and dynamic compression on meniscal cell gene expression. J Orthop Res. 2003;21(6):963–9. https://doi.org/10.1016/S0736-0266(03)00063-9.

    Article  CAS  Google Scholar 

  55. McHenry JA, Zielinska B, Donahue TL. Proteoglycan breakdown of meniscal explants following dynamic compression using a novel bioreactor. Ann Biomed Eng. 2006;34(11):1758–66. https://doi.org/10.1007/s10439-006-9178-5.

    Article  CAS  Google Scholar 

  56. Eifler RL, Blough ER, Dehlin JM, Haut Donahue TL. Oscillatory fluid flow regulates glycosaminoglycan production via an intracellular calcium pathway in meniscal cells. J Orthop Res. 2006;24(3):375–84. https://doi.org/10.1002/jor.20028.

    Article  CAS  Google Scholar 

  57. Deschner J, Wypasek E, Ferretti M, Rath B, Anghelina M, Agarwal S. Regulation of RANKL by biomechanical loading in fibrochondrocytes of meniscus. J Biomech. 2006;39(10):1796–803. https://doi.org/10.1016/j.jbiomech.2005.05.034.

    Article  Google Scholar 

  58. Ferretti M, Madhavan S, Deschner J, Rath-Deschner B, Wypasek E, Agarwal S. Dynamic biophysical strain modulates proinflammatory gene induction in meniscal fibrochondrocytes. Am J Physiol Cell Physiol. 2006;290(6):C1610–5. https://doi.org/10.1152/ajpcell.00529.2005.

    Article  CAS  Google Scholar 

  59. Madhavan S, Anghelina M, Sjostrom D, Dossumbekova A, Guttridge DC, Agarwal S. Biomechanical signals suppress TAK1 activation to inhibit NF-kappaB transcriptional activation in fibrochondrocytes. J Immunol. 2007;179(9):6246–54. https://doi.org/10.4049/jimmunol.179.9.6246.

    Article  CAS  Google Scholar 

  60. McNulty AL, Estes BT, Wilusz RE, Weinberg JB, Guilak F. Dynamic loading enhances integrative meniscal repair in the presence of interleukin-1. Osteoarthr Cartil. 2010;18(6):830–8. https://doi.org/10.1016/j.joca.2010.02.009.

    Article  CAS  Google Scholar 

  61. Ballyns JJ, Bonassar LJ. Dynamic compressive loading of image-guided tissue engineered meniscal constructs. J Biomech. 2011;44(3):509–16. https://doi.org/10.1016/j.jbiomech.2010.09.017.

    Article  Google Scholar 

  62. Furumatsu T, Kanazawa T, Miyake Y, Kubota S, Takigawa M, Ozaki T. Mechanical stretch increases Smad3-dependent CCN2 expression in inner meniscus cells. J Orthop Res. 2012;30(11):1738–45. https://doi.org/10.1002/jor.22142.

    Article  CAS  Google Scholar 

  63. Kanazawa T, Furumatsu T, Hachioji M, Oohashi T, Ninomiya Y, Ozaki T. Mechanical stretch enhances COL2A1 expression on chromatin by inducing SOX9 nuclear translocalization in inner meniscus cells. J Orthop Res. 2012;30(3):468–74. https://doi.org/10.1002/jor.21528.

    Article  CAS  Google Scholar 

  64. Puetzer JL, Ballyns JJ, Bonassar LJ. The effect of the duration of mechanical stimulation and post-stimulation culture on the structure and properties of dynamically compressed tissue-engineered menisci. Tissue Eng Part A. 2012;18(13–14):1365–75. https://doi.org/10.1089/ten.TEA.2011.0589.

    Article  CAS  Google Scholar 

  65. Favre J, Jolles BM. Gait analysis of patients with knee osteoarthritis highlights a pathological mechanical pathway and provides a basis for therapeutic interventions. EFORT Open Rev. 2016;1(10):368–74. https://doi.org/10.1302/2058-5241.1.000051.

    Article  Google Scholar 

  66. Henriksen M, Graven-Nielsen T, Aaboe J, Andriacchi TP, Bliddal H. Gait changes in patients with knee osteoarthritis are replicated by experimental knee pain. Arthritis Care Res (Hoboken). 2010;62(4):501–9. https://doi.org/10.1002/acr.20033.

    Article  Google Scholar 

  67. Ro DH, Lee J, Lee J, Park JY, Han HS, Lee MC. Effects of knee osteoarthritis on hip and ankle gait mechanics. Adv Orthop. 2019;2019:9757369. https://doi.org/10.1155/2019/9757369.

    Article  Google Scholar 

  68. Cutcliffe HC, Kottamasu PK, McNulty AL, Goode AP, Spritzer CE, DeFrate LE. Mechanical metrics may show improved ability to predict osteoarthritis compared to T1rho mapping. J Biomech. 2021;129:110771. https://doi.org/10.1016/j.jbiomech.2021.110771.

    Article  Google Scholar 

  69. Setton LA, Elliott DM, Mow VC. Altered mechanics of cartilage with osteoarthritis: human osteoarthritis and an experimental model of joint degeneration. Osteoarthr Cartil. 1999;7(1):2–14. https://doi.org/10.1053/joca.1998.0170.

    Article  CAS  Google Scholar 

  70. Daszkiewicz K, Łuczkiewicz P. Biomechanics of the medial meniscus in the osteoarthritic knee joint. PeerJ. 2021;9:e12509. https://doi.org/10.7717/peerj.12509.

    Article  Google Scholar 

  71. Seitz AM, Osthaus F, Schwer J, Warnecke D, Faschingbauer M, Sgroi M, et al. Osteoarthritis-related degeneration alters the biomechanical properties of human menisci before the articular cartilage. Front Bioeng Biotechnol. 2021;9:659989. https://doi.org/10.3389/fbioe.2021.659989.

    Article  Google Scholar 

  72. Warnecke D, Balko J, Haas J, Bieger R, Leucht F, Wolf N, et al. Degeneration alters the biomechanical properties and structural composition of lateral human menisci. Osteoarthr Cartil. 2020;28(11):1482–91. https://doi.org/10.1016/j.joca.2020.07.004.

    Article  CAS  Google Scholar 

  73. Englund M, Guermazi A, Lohmander SL. The role of the meniscus in knee osteoarthritis: a cause or consequence? Radiol Clin North Am. 2009;47(4):703–12. https://doi.org/10.1016/j.rcl.2009.03.003.

    Article  Google Scholar 

  74. Noble J, Hamblen DL. The pathology of the degenerate meniscus lesion. J Bone Joint Surg Br. 1975;57(2):180–6.

    Article  CAS  Google Scholar 

  75. Sward P, Frobell R, Englund M, Roos H, Struglics A. Cartilage and bone markers and inflammatory cytokines are increased in synovial fluid in the acute phase of knee injury (hemarthrosis)–a cross-sectional analysis. Osteoarthr Cartil. 2012;20(11):1302–8. https://doi.org/10.1016/j.joca.2012.07.021.

    Article  CAS  Google Scholar 

  76. Bigoni M, Turati M, Sacerdote P, Gaddi D, Piatti M, Castelnuovo A, et al. Characterization of synovial fluid cytokine profiles in chronic meniscal tear of the knee. J Orthop Res. 2017;35(2):340–6. https://doi.org/10.1002/jor.23272.

    Article  CAS  Google Scholar 

  77. • Clair AJ, Kingery MT, Anil U, Kenny L, Kirsch T, Strauss EJ. Alterations in synovial fluid biomarker levels in knees with meniscal injury as compared with asymptomatic contralateral knees. Am J Sports Med. 2019;47(4):847–56. https://doi.org/10.1177/0363546519825498. (This study assessed synovial fluid biomarkers in patients undergoing arthroscopic meniscectomy, comparing operative and contralateral knees. There were significantly higher levels of IL-6, MIP-1β, MCP-1, and MMP-3 in the operative knee compared to the contralateral knees.)

    Article  Google Scholar 

  78. Ochi M, Uchio Y, Okuda K, Shu N, Yamaguchi H, Sakai Y. Expression of cytokines after meniscal rasping to promote meniscal healing. Arthrosc. 2001;17(7):724–31. https://doi.org/10.1053/jars.2001.23583.

    Article  CAS  Google Scholar 

  79. van den Berg WB, Joosten LA, van de Loo FA. TNF alpha and IL-1 beta are separate targets in chronic arthritis. Clin Exp Rheumatol. 1999;17(6 Suppl 18):S105–14.

    Google Scholar 

  80. McNulty AL, Moutos FT, Weinberg JB, Guilak F. Enhanced integrative repair of the porcine meniscus in vitro by inhibition of interleukin-1 or tumor necrosis factor alpha. Arthritis Rheum. 2007;56(9):3033–42. https://doi.org/10.1002/art.22839.

    Article  CAS  Google Scholar 

  81. Wilusz RE, Weinberg JB, Guilak F, McNulty AL. Inhibition of integrative repair of the meniscus following acute exposure to interleukin-1 in vitro. J Orthop Res. 2008;26(4):504–12. https://doi.org/10.1002/jor.20538.

    Article  CAS  Google Scholar 

  82. Billinghurst RC, Dahlberg L, Ionescu M, Reiner A, Bourne R, Rorabeck C, et al. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest. 1997;99(7):1534–45. https://doi.org/10.1172/JCI119316.

    Article  CAS  Google Scholar 

  83. Murphy G, Nagase H. Progress in matrix metalloproteinase research. Mol Aspects Med. 2008;29(5):290–308. https://doi.org/10.1016/j.mam.2008.05.002.

    Article  CAS  Google Scholar 

  84. Brophy RH, Rai MF, Zhang Z, Torgomyan A, Sandell LJ. Molecular analysis of age and sex-related gene expression in meniscal tears with and without a concomitant anterior cruciate ligament tear. J Bone Joint Surg Am. 2012;94(5):385–93. https://doi.org/10.2106/JBJS.K.00919.

    Article  Google Scholar 

  85. Killian ML, Zielinska B, Gupta T, Haut Donahue TL. In vitro inhibition of compression-induced catabolic gene expression in meniscal explants following treatment with IL-1 receptor antagonist. J Orthop Sci. 2011;16(2):212–20. https://doi.org/10.1007/s00776-011-0026-6.

    Article  CAS  Google Scholar 

  86. Blain EJ. Mechanical regulation of matrix metalloproteinases. Front Biosci. 2007;12:507–27. https://doi.org/10.2741/2078.

    Article  CAS  Google Scholar 

  87. Cook AE, Stoker AM, Leary EV, Pfeiffer FM, Cook JL. Metabolic responses of meniscal explants to injury and inflammation ex vivo. J Orthop Res. 2018;36(10):2657–63. https://doi.org/10.1002/jor.24045.

    Article  CAS  Google Scholar 

  88. McNulty AL, Rothfusz NE, Leddy HA, Guilak F. Synovial fluid concentrations and relative potency of interleukin-1 alpha and beta in cartilage and meniscus degradation. J Orthop Res. 2013;31(7):1039–45. https://doi.org/10.1002/jor.22334.

    Article  CAS  Google Scholar 

  89. Liu B, Goode AP, Carter TE, Utturkar GM, Huebner JL, Taylor DC, et al. Matrix metalloproteinase activity and prostaglandin E2 are elevated in the synovial fluid of meniscus tear patients. Connect Tissue Res. 2017;58(3–4):305–16. https://doi.org/10.1080/03008207.2016.1256391.

    Article  CAS  Google Scholar 

  90. Sokolove J, Lepus CM. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther Adv Musculoskelet Dis. 2013;5(2):77–94. https://doi.org/10.1177/1759720X12467868.

    Article  CAS  Google Scholar 

  91. Martel-Pelletier J, Pelletier JP, Fahmi H. Cyclooxygenase-2 and prostaglandins in articular tissues. Semin Arthritis Rheum. 2003;33(3):155–67. https://doi.org/10.1016/s0049-0172(03)00134-3.

    Article  CAS  Google Scholar 

  92. • Turati M, Maggioni D, Zanchi N, Gandolla M, Gorla M, Sacerdote P, et al. Characterization of synovial cytokine patterns in bucket-handle and posterior horn meniscal tears. Mediators Inflamm. 2020;2020:5071934. https://doi.org/10.1155/2020/5071934. (This study assessed the levels of pro-inflammatory and anti-inflammatory cytokines in the synovial fluid of meniscus tear patients. They found that TNF-α levels were significantly higher in patients with bucket handle tears compared to posterior horn tears, while IL-1β was significantly higher in patients with posterior horn tears compared to those with bucket handle tears.)

    Article  CAS  Google Scholar 

  93. Brophy RH, Sandell LJ, Rai MF. Traumatic and degenerative meniscus tears have different gene expression signatures. Am J Sports Med. 2017;45(1):114–20. https://doi.org/10.1177/0363546516664889.

    Article  Google Scholar 

  94. Ogura T, Suzuki M, Sakuma Y, Yamauchi K, Orita S, Miyagi M, et al. Differences in levels of inflammatory mediators in meniscal and synovial tissue of patients with meniscal lesions. J Exp Orthop. 2016;3(1):7. https://doi.org/10.1186/s40634-016-0041-9.

    Article  Google Scholar 

  95. Labarre C, Kim SH, Pujol N. Incidence and type of meniscal tears in multilligament injured knees. Knee Surg Sports Traumatol Arthrosc. 2022. https://doi.org/10.1007/s00167-022-07064-6.

    Article  Google Scholar 

  96. Ding J, Niu X, Su Y, Li X. Expression of synovial fluid biomarkers in patients with knee osteoarthritis and meniscus injury. Exp Ther Med. 2017;14(2):1609–13. https://doi.org/10.3892/etm.2017.4636.

    Article  CAS  Google Scholar 

  97. Riera KM, Rothfusz NE, Wilusz RE, Weinberg JB, Guilak F, McNulty AL. Interleukin-1, tumor necrosis factor-alpha, and transforming growth factor-beta 1 and integrative meniscal repair: influences on meniscal cell proliferation and migration. Arthritis Res Ther. 2011;13(6):R187. https://doi.org/10.1186/ar3515.

    Article  CAS  Google Scholar 

  98. Mull C, Wohlmuth P, Krause M, Alm L, Kling H, Schilling AF, et al. Hepatocyte growth factor and matrix metalloprotease 2 levels in synovial fluid of the knee joint are correlated with clinical outcome of meniscal repair. Knee. 2020;27(4):1143–50. https://doi.org/10.1016/j.knee.2020.05.001.

    Article  Google Scholar 

  99. Chevalier X, Goupille P, Beaulieu AD, Burch FX, Bensen WG, Conrozier T, et al. Intraarticular injection of anakinra in osteoarthritis of the knee: a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum. 2009;61(3):344–52. https://doi.org/10.1002/art.24096.

    Article  CAS  Google Scholar 

  100. Behrendt P, Hafelein K, Preusse-Prange A, Bayer A, Seekamp A, Kurz B. IL-10 ameliorates TNF-alpha induced meniscus degeneration in mature meniscal tissue in vitro. BMC Musculoskelet Disord. 2017;18(1):197. https://doi.org/10.1186/s12891-017-1561-x.

    Article  CAS  Google Scholar 

  101. McNulty AL, Miller MR, O’Connor SK, Guilak F. The effects of adipokines on cartilage and meniscus catabolism. Connect Tissue Res. 2011;52(6):523–33. https://doi.org/10.3109/03008207.2011.597902.

    Article  CAS  Google Scholar 

  102. Shen C, Yan J, Erkocak OF, Zheng XF, Chen XD. Nitric oxide inhibits autophagy via suppression of JNK in meniscal cells. Rheumatol (Oxford). 2014;53(6):1022–33. https://doi.org/10.1093/rheumatology/ket471.

    Article  CAS  Google Scholar 

  103. Hennerbichler A, Moutos FT, Hennerbichler D, Weinberg JB, Guilak F. Interleukin-1 and tumor necrosis factor alpha inhibit repair of the porcine meniscus in vitro. Osteoarthr Cartil. 2007;15(9):1053–60. https://doi.org/10.1016/j.joca.2007.03.003.

    Article  CAS  Google Scholar 

  104. McNulty AL, Weinberg JB, Guilak F. Inhibition of matrix metalloproteinases enhances in vitro repair of the meniscus. Clin Orthop Relat Res. 2009;467(6):1557–67. https://doi.org/10.1007/s11999-008-0596-6.

    Article  Google Scholar 

  105. • Kim-Wang SY, Holt AG, McGowan AM, Danyluk ST, Goode AP, Lau BC, et al. Immune cell profiles in synovial fluid after anterior cruciate ligament and meniscus injuries. Arthritis Res Ther. 2021;23(1):280. https://doi.org/10.1186/s13075-021-02661-1. (This study characterized immune cell profiles in the synovial fluid of ACL- and meniscus-injured knees. Total viable and CD3+ T cells were significantly elevated in the injured knees as compared to contralateral control knees.)

    Article  CAS  Google Scholar 

  106. Lurati A, Laria A, Gatti A, Brando B, Scarpellini M. Different T cells’ distribution and activation degree of Th17 CD4+ cells in peripheral blood in patients with osteoarthritis, rheumatoid arthritis, and healthy donors: preliminary results of the MAGENTA CLICAO study. Open Access Rheumatol. 2015;7:63–8. https://doi.org/10.2147/OARRR.S81905.

    Article  Google Scholar 

  107. Rosshirt N, Hagmann S, Tripel E, Gotterbarm T, Kirsch J, Zeifang F, et al. A predominant Th1 polarization is present in synovial fluid of end-stage osteoarthritic knee joints: analysis of peripheral blood, synovial fluid and synovial membrane. Clin Exp Immunol. 2019;195(3):395–406. https://doi.org/10.1111/cei.13230.

    Article  CAS  Google Scholar 

  108. Koenders MI, Joosten LA, van den Berg WB. Potential new targets in arthritis therapy: interleukin (IL)-17 and its relation to tumour necrosis factor and IL-1 in experimental arthritis. Ann Rheum Dis. 2006;65 Suppl 3:iii29-33. https://doi.org/10.1136/ard.2006.058529.

    Article  CAS  Google Scholar 

  109. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nat. 2013;496(7446):445–55. https://doi.org/10.1038/nature12034.

    Article  CAS  Google Scholar 

  110. Kraus VB, McDaniel G, Huebner JL, Stabler TV, Pieper CF, Shipes SW, et al. Direct in vivo evidence of activated macrophages in human osteoarthritis. Osteoarthr Cartil. 2016;24(9):1613–21. https://doi.org/10.1016/j.joca.2016.04.010.

    Article  CAS  Google Scholar 

  111. Griffin TM, Scanzello CR. Innate inflammation and synovial macrophages in osteoarthritis pathophysiology. Clin Exp Rheumatol. 2019;37 Suppl 120(5):57–63.

    Google Scholar 

  112. Woodell-May JE, Sommerfeld SD. Role of inflammation and the immune system in the progression of osteoarthritis. J Orthop Res. 2020;38(2):253–7. https://doi.org/10.1002/jor.24457.

    Article  Google Scholar 

  113. Bondeson J, Blom AB, Wainwright S, Hughes C, Caterson B, van den Berg WB. The role of synovial macrophages and macrophage-produced mediators in driving inflammatory and destructive responses in osteoarthritis. Arthritis Rheum. 2010;62(3):647–57. https://doi.org/10.1002/art.27290.

    Article  CAS  Google Scholar 

  114. Wu CL, McNeill J, Goon K, Little D, Kimmerling K, Huebner J, et al. Conditional macrophage depletion increases inflammation and does not inhibit the development of osteoarthritis in obese macrophage fas-induced apoptosis-transgenic mice. Arthritis Rheumatol. 2017;69(9):1772–83. https://doi.org/10.1002/art.40161.

  115. Bailey KN, Furman BD, Zeitlin J, Kimmerling KA, Wu CL, Guilak F, et al. Intra-articular depletion of macrophages increases acute synovitis and alters macrophage polarity in the injured mouse knee. Osteoarthr Cartil. 2020;28(5):626–38. https://doi.org/10.1016/j.joca.2020.01.015.

    Article  CAS  Google Scholar 

  116. Nishida Y, Hashimoto Y, Orita K, Nishino K, Kinoshita T, Nakamura H. Intra-articular injection of stromal cell-derived factor 1alpha promotes meniscal healing via macrophage and mesenchymal stem cell accumulation in a rat meniscal defect model. Int J Mol Sci. 2020;21(15):5454. https://doi.org/10.3390/ijms21155454.

  117. Rowe MA, Harper LR, McNulty MA, Lau AG, Carlson CS, Leng L, et al. Reduced osteoarthritis severity in aged mice with deletion of macrophage migration inhibitory factor. Arthritis Rheumatol. 2017;69(2):352–61. https://doi.org/10.1002/art.39844.

    Article  CAS  Google Scholar 

Download references

Funding

This paper was funded in part by NIH grants AR079184, AR065527, AR074800, AR078245, and AR073221.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy L. McNulty.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Osteoarthritis

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bradley, P.X., Thomas, K.N., Kratzer, A.L. et al. The Interplay of Biomechanical and Biological Changes Following Meniscus Injury. Curr Rheumatol Rep 25, 35–46 (2023). https://doi.org/10.1007/s11926-022-01093-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-022-01093-3

Keywords

Navigation