Skip to main content

Advertisement

Log in

Meniscal Extrusion: Diagnosis, Etiology, and Treatment Options

  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Purpose of Review

The concept of meniscal extrusion has recently been recognized as a hallmark of meniscus dysfunction. This review examines contemporary literature regarding the pathophysiology, classification, diagnosis, treatment, and future directions for investigation regarding meniscus extrusion.

Recent Findings

Meniscus extrusion, defined as >3 mm of radial displacement of the meniscus, leads to altered knee biomechanics and accelerated knee joint degeneration. Meniscus extrusion has been associated with degenerative joint disease, posterior root and radial meniscal tears, and acute trauma. Meniscus centralization and meniscotibial ligament repair have been proposed as techniques to address meniscal extrusion with promising biomechanical, animal model, and early clinical reports.

Summary

Further studies on the epidemiology of meniscus extrusion and associated long-term nonoperative outcomes will help to elucidate its role in meniscus dysfunction and resultant arthritic development. Understanding and appreciation for the anatomic attachments of the meniscus will help to inform future repair techniques. Long-term reporting on the clinical outcomes of meniscus centralization techniques will yield insights into the clinical significance of meniscus extrusion correction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fairbank TJ. Knee joint changes after meniscectomy. J Bone Joint Surg Br. 1948;30(4):664–70.

    Article  Google Scholar 

  2. Allaire R, Muriuki M, Gilbertson L, Harner CD. Biomechanical consequences of a tear of the posterior root of the medial meniscus. Similar to total meniscectomy. J Bone Joint Surg Am. 2008;90(9):1922–31.

    Article  PubMed  Google Scholar 

  3. Forkel P, Herbort M, Schulze M, Rosenbaum D, Kirstein L, Raschke M, et al. Biomechanical consequences of a posterior root tear of the lateral meniscus: stabilizing effect of the meniscofemoral ligament. Arch Orthop Trauma Surg. 2013;133(5):621–6.

    Article  PubMed  Google Scholar 

  4. Harner CD, Mauro CS, Lesniak BP, Romanowski JR. Biomechanical consequences of a tear of the posterior root of the medial meniscus. Surgical technique. J Bone Joint Surg Am. 2009;91(Suppl 2):257–70.

    Article  PubMed  Google Scholar 

  5. LaPrade CM, Jansson KS, Dornan G, Smith SD, Wijdicks CA, LaPrade RF. Altered tibiofemoral contact mechanics due to lateral meniscus posterior horn root avulsions and radial tears can be restored with in situ pull-out suture repairs. J Bone Joint Surg Am. 2014;96(6):471–9.

    Article  PubMed  Google Scholar 

  6. Walker PS, Arno S, Bell C, Salvadore G, Borukhov I, Oh C. Function of the medial meniscus in force transmission and stability. J Biomech. 2015;48(8):1383–8.

    Article  PubMed  Google Scholar 

  7. Smoak JB, Matthews JR, Vinod AV, Kluczynski MA, Bisson LJ. An up-to-date review of the meniscus literature: a systematic summary of systematic reviews and meta-analyses. Orthop J Sports Med. 2020;8(9):2325967120950306.

    Article  PubMed  Google Scholar 

  8. Fox AJ, Wanivenhaus F, Burge AJ, Warren RF, Rodeo SA. The human meniscus: a review of anatomy, function, injury, and advances in treatment. Clin Anat. 2015;28(2):269–87.

    Article  PubMed  Google Scholar 

  9. Achtnich A, Petersen W, Willinger L, Sauter A, Rasper M, Wörtler K, et al. Medial meniscus extrusion increases with age and BMI and is depending on different loading conditions. Knee Surg Sports Traumatol Arthrosc. 2018;26(8):2282–8.

    Article  PubMed  Google Scholar 

  10. Gajjar SM, Solanki KP, Shanmugasundaram S, Kambhampati SBS. Meniscal extrusion: a narrative review. Orthop J Sports Med. 2021;9(11):23259671211043797.

    Article  PubMed  Google Scholar 

  11. Berthiaume MJ, Raynauld JP, Martel-Pelletier J, Labonté F, Beaudoin G, Bloch DA, et al. Meniscal tear and extrusion are strongly associated with progression of symptomatic knee osteoarthritis as assessed by quantitative magnetic resonance imaging. Ann Rheum Dis. 2005;64(4):556–63.

    Article  PubMed  Google Scholar 

  12. Gale DR, Chaisson CE, Totterman SM, Schwartz RK, Gale ME, Felson D. Meniscal subluxation: association with osteoarthritis and joint space narrowing. Osteoarthr Cartil. 1999;7(6):526–32.

    Article  CAS  Google Scholar 

  13. Adams JG, McAlindon T, Dimasi M, Carey J, Eustace S. Contribution of meniscal extrusion and cartilage loss to joint space narrowing in osteoarthritis. Clin Radiol. 1999;54(8):502–6.

    Article  CAS  PubMed  Google Scholar 

  14. Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials. 2011;32(30):7411–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Andrews SH, Rattner JB, Abusara Z, Adesida A, Shrive NG, Ronsky JL. Tie-fibre structure and organization in the knee menisci. J Anat. 2014;224(5):531–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jacob G, Shimomura K, Krych AJ, Nakamura N. The meniscus tear: a review of stem cell therapies. Cells. 2019;9(1)

  17. Mameri ES, Dasari SP, Fortier LM, Verdejo FG, Gursoy S, Yanke AB, et al. Review of meniscus anatomy and biomechanics. Curr Rev Musculoskelet Med. 2022;15(5):323–35.

    Article  PubMed  PubMed Central  Google Scholar 

  18. LaPrade CM, Ellman MB, Rasmussen MT, James EW, Wijdicks CA, Engebretsen L, et al. Anatomy of the anterior root attachments of the medial and lateral menisci: a quantitative analysis. Am J Sports Med. 2014;42(10):2386–92.

    Article  PubMed  Google Scholar 

  19. Johannsen AM, Civitarese DM, Padalecki JR, Goldsmith MT, Wijdicks CA, LaPrade RF. Qualitative and quantitative anatomic analysis of the posterior root attachments of the medial and lateral menisci. Am J Sports Med. 2012;40(10):2342–7.

    Article  PubMed  Google Scholar 

  20. Nakamura T, Marshall BD, Price TM, Mao Y, Linde MA, Koga H, et al. Arthroscopic centralization for lateral meniscal injuries reduces laxity in the anterior cruciate ligament-reconstructed knee. Am J Sports Med. 2021;49(13):3528–33.

    Article  PubMed  Google Scholar 

  21. Krych AJ, Bernard CD, Leland DP, Camp CL, Johnson AC, Finnoff JT, et al. Isolated meniscus extrusion associated with meniscotibial ligament abnormality. Knee Surg Sports Traumatol Arthrosc. 2020;28(11):3599–605. Manuscript describing how isolated meniscus extrusion, a rare occurrence, is commonly seen with meniscotibial ligament abnormality.

    Article  PubMed  Google Scholar 

  22. Masferrer-Pino A, Saenz-Navarro I, Rojas G, Perelli S, Erquicia J, Gelber PE, et al. The menisco-tibio-popliteus-fibular complex: anatomic description of the structures that could avoid lateral meniscal extrusion. Arthroscopy. 2020;36(7):1917–25.

    Article  PubMed  Google Scholar 

  23. Fox AJ, Bedi A, Rodeo SA. The basic science of human knee menisci: structure, composition, and function. Sports Health. 2012;4(4):340–51.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jones RS, Keene GC, Learmonth DJ, Bickerstaff D, Nawana NS, Costi JJ, et al. Direct measurement of hoop strains in the intact and torn human medial meniscus. Clin Biomech (Bristol, Avon). 1996;11(5):295–300.

    Article  PubMed  Google Scholar 

  25. Walker PS, Erkman MJ. The role of the menisci in force transmission across the knee. Clin Orthop Relat Res. 1975;109:184–92.

    Article  Google Scholar 

  26. Fukubayashi T, Kurosawa H. The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints. Acta Orthop Scand. 1980;51(6):871–9.

    Article  CAS  PubMed  Google Scholar 

  27. Crema MD, Roemer FW, Felson DT, Englund M, Wang K, Jarraya M, et al. Factors associated with meniscal extrusion in knees with or at risk for osteoarthritis: the Multicenter Osteoarthritis study. Radiology. 2012;264(2):494–503.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Furumatsu T, Kodama Y, Kamatsuki Y, Hino T, Okazaki Y, Ozaki T. Meniscal extrusion progresses shortly after the medial meniscus posterior root tear. Knee Surg Relat Res. 2017;29(4):295–301.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hwang BY, Kim SJ, Lee SW, Lee HE, Lee CK, Hunter DJ, et al. Risk factors for medial meniscus posterior root tear. Am J Sports Med. 2012;40(7):1606–10.

    Article  PubMed  Google Scholar 

  30. Lerer DB, Umans HR, Hu MX, Jones MH. The role of meniscal root pathology and radial meniscal tear in medial meniscal extrusion. Skeletal Radiol. 2004;33(10):569–74.

    Article  CAS  PubMed  Google Scholar 

  31. Chung KS, Ha JK, Ra HJ, Nam GW, Kim JG. Pullout fixation of posterior medial meniscus root tears: correlation between meniscus extrusion and midterm clinical results. Am J Sports Med. 2017;45(1):42–9.

    Article  PubMed  Google Scholar 

  32. Daney BT, Aman ZS, Krob JJ, Storaci HW, Brady AW, Nakama G, et al. Utilization of transtibial centralization suture best minimizes extrusion and restores tibiofemoral contact mechanics for anatomic medial meniscal root repairs in a cadaveric model. Am J Sports Med. 2019;47(7):1591–600.

    Article  PubMed  Google Scholar 

  33. Krych AJ, LaPrade MD, Hevesi M, Rhodes NG, Johnson AC, Camp CL, et al. Investigating the chronology of meniscus root tears: do medial meniscus posterior root tears cause extrusion or the other way around? Orthop. J Sports Med. 2020;8(11):2325967120961368. Manuscript describing the presense of meniscotibial disruption and meniscus extrusion on MRI prior to diagnosis of medial meniscus posterior root tear.

  34. Leafblad ND, Smith PA, Stuart MJ, Krych AJ. Arthroscopic centralization of the extruded medial meniscus. Arthrosc Tech., Manuscript describing the techniques for transtibial medial meniscus posterior root repair with concomittant meniscus centralization for limit meniscus extrusion. 2021;10(1):e43–e8.

  35. Brody JM, Lin HM, Hulstyn MJ, Tung GA. Lateral meniscus root tear and meniscus extrusion with anterior cruciate ligament tear. Radiology. 2006;239(3):805–10.

    Article  PubMed  Google Scholar 

  36. Pareek A, Parkes CW, Bernard CD, Abdel MP, Saris DBF, Krych AJ. The SIFK score: a validated predictive model for arthroplasty progression after subchondral insufficiency fractures of the knee. Knee Surg Sports Traumatol Arthrosc. 2020;28(10):3149–55.

    Article  PubMed  Google Scholar 

  37. Singh AP, Saran S, Thukral BB, Kaushik R. Ultrasonographic evaluation of osteoarthritis-affected knee joints: comparison with Kellgren-Lawrence grading and pain scores. J Med Ultrasound. 2021;29(1):39–45.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Okazaki Y, Furumatsu T, Kamatsuki Y, Okazaki Y, Masuda S, Hiranaka T, et al. Transtibial pullout repair of the lateral meniscus posterior root tear combined with anterior cruciate ligament reconstruction reduces lateral meniscus extrusion: a retrospective study. Orthop Traumatol Surg Res. 2020;106(3):469–73.

    Article  PubMed  Google Scholar 

  39. Geeslin AG, Civitarese D, Turnbull TL, Dornan GJ, Fuso FA, LaPrade RF. Influence of lateral meniscal posterior root avulsions and the meniscofemoral ligaments on tibiofemoral contact mechanics. Knee Surg Sports Traumatol Arthrosc. 2016;24(5):1469–77.

    Article  PubMed  Google Scholar 

  40. Pula DA, Femia RE, Marzo JM, Bisson LJ. Are root avulsions of the lateral meniscus associated with extrusion at the time of acute anterior cruciate ligament injury?: a case control study. Am J Sports Med. 2014;42(1):173–6.

    Article  PubMed  Google Scholar 

  41. Goto N, Okazaki K, Akiyama T, Akasaki Y, Mizu-Uchi H, Hamai S, et al. Alignment factors affecting the medial meniscus extrusion increases the risk of osteoarthritis development. Knee Surg Sports Traumatol Arthrosc. 2019;27(8):2617–23.

    Article  PubMed  Google Scholar 

  42. Willinger L, Lang JJ, Berthold D, Muench LN, Achtnich A, Forkel P, et al. Varus alignment aggravates tibiofemoral contact pressure rise after sequential medial meniscus resection. Knee Surg Sports Traumatol Arthrosc. 2020;28(4):1055–63.

    Article  PubMed  Google Scholar 

  43. Erquicia J, Gelber PE, Cardona-Muñoz JI, Pelfort X, Tey M, Monllau JC. There is no relation between mild malalignment and meniscal extrusion in trauma emergency patients. Injury. 2012;43(Suppl 2):S68–72.

    Article  PubMed  Google Scholar 

  44. Chung KS, Ha JK, Ra HJ, Kim JG. Preoperative varus alignment and postoperative meniscus extrusion are the main long-term predictive factors of clinical failure of meniscal root repair. Knee Surg Sports Traumatol Arthrosc. 2021;29(12):4122–30. Manuscript highlighting the independent risk factors of varus malalignment and meniscus extrusion in predicting clincal failure of posterior root tear repair.

  45. Noyes FR, Barber-Westin SD. A systematic review of the incidence and clinical significance of postoperative meniscus transplant extrusion. Knee Surg Sports Traumatol Arthrosc. 2015;23(1):290–302.

    Article  PubMed  Google Scholar 

  46. Lee DH, Kim TH, Lee SH, Kim CW, Kim JM, Bin SI. Evaluation of meniscus allograft transplantation with serial magnetic resonance imaging during the first postoperative year: focus on graft extrusion. Arthroscopy. 2008;24(10):1115–21.

    Article  PubMed  Google Scholar 

  47. Abat F, Gelber PE, Erquicia JI, Pelfort X, Gonzalez-Lucena G, Monllau JC. Suture-only fixation technique leads to a higher degree of extrusion than bony fixation in meniscal allograft transplantation. Am J Sports Med. 2012;40(7):1591–6.

    Article  PubMed  Google Scholar 

  48. Yoon KH, Lee HW, Park SY, Kim JS, Park JY. Centralized anterior bone plug results in less graft extrusion in patients undergoing medial meniscus allograft transplantation following anterior cruciate ligament reconstruction. Knee. 2020;27(3):884–90.

    Article  PubMed  Google Scholar 

  49. Puig L, Monllau JC, Corrales M, Pelfort X, Melendo E, Cáceres E. Factors affecting meniscal extrusion: correlation with MRI, clinical, and arthroscopic findings. Knee Surg Sports Traumatol Arthrosc. 2006;14(4):394–8.

    Article  PubMed  Google Scholar 

  50. Raynauld JP, Martel-Pelletier J, Berthiaume MJ, Beaudoin G, Choquette D, Haraoui B, et al. Long term evaluation of disease progression through the quantitative magnetic resonance imaging of symptomatic knee osteoarthritis patients: correlation with clinical symptoms and radiographic changes. Arthritis Res Ther. 2006;8(1):R21.

    Article  PubMed  Google Scholar 

  51. Wang Y, Wluka AE, Pelletier JP, Martel-Pelletier J, Abram F, Ding C, et al. Meniscal extrusion predicts increases in subchondral bone marrow lesions and bone cysts and expansion of subchondral bone in osteoarthritic knees. Rheumatology (Oxford). 2010;49(5):997–1004.

    Article  PubMed  Google Scholar 

  52. Bennett LD, Buckland-Wright JC. Meniscal and articular cartilage changes in knee osteoarthritis: a cross-sectional double-contrast macroradiographic study. Rheumatology (Oxford). 2002;41(8):917–23.

    Article  CAS  PubMed  Google Scholar 

  53. Foreman SC, Neumann J, Joseph GB, Nevitt MC, McCulloch CE, Lane NE, et al. Longitudinal MRI structural findings observed in accelerated knee osteoarthritis: data from the Osteoarthritis Initiative. Skeletal Radiol. 2019;48(12):1949–59.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ding C, Martel-Pelletier J, Pelletier JP, Abram F, Raynauld JP, Cicuttini F, et al. Knee meniscal extrusion in a largely non-osteoarthritic cohort: association with greater loss of cartilage volume. Arthritis Res Ther. 2007;9(2):R21.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Patel R, Eltgroth M, Souza R, Zhang CA, Majumdar S, Link TM, et al. Loaded versus unloaded magnetic resonance imaging (MRI) of the knee: effect on meniscus extrusion in healthy volunteers and patients with osteoarthritis. Eur J Radiol Open. 2016;3:100–7.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Costa CR, Morrison WB, Carrino JA. Medial meniscus extrusion on knee MRI: is extent associated with severity of degeneration or type of tear? AJR Am J Roentgenol. 2004;183(1):17–23.

    Article  PubMed  Google Scholar 

  57. Svensson F, Felson DT, Zhang F, Guermazi A, Roemer FW, Niu J, et al. Meniscal body extrusion and cartilage coverage in middle-aged and elderly without radiographic knee osteoarthritis. Eur Radiol. 2019;29(4):1848–54. Manuscript describing meniscus extrusion via MRI in over 700 patients validating the commonly used 3 mm cutoff for pathologic extrusion.

  58. Choi CJ, Choi YJ, Lee JJ, Choi CH. Magnetic resonance imaging evidence of meniscal extrusion in medial meniscus posterior root tear. Arthroscopy. 2010;26(12):1602–6.

    Article  PubMed  Google Scholar 

  59. Liu Y, Joseph GB, Foreman SC, Li X, Lane NE, Nevitt MC, et al. Determining a threshold of medial meniscal extrusion for prediction of knee pain and cartilage damage progression over 4 years: data from the Osteoarthritis Initiative. AJR Am J Roentgenol. 2021;216(5):1318–28.

    Article  PubMed  Google Scholar 

  60. Karpinski K, Diermeier T, Willinger L, Imhoff AB, Achtnich A, Petersen W. No dynamic extrusion of the medial meniscus in ultrasound examination in patients with confirmed root tear lesion. Knee Surg Sports Traumatol Arthrosc. 2019;27(10):3311–7.

    Article  PubMed  Google Scholar 

  61. Cheng Q, Zhao FC. Comparison of 1.5- and 3.0-T magnetic resonance imaging for evaluating lesions of the knee: a systematic review and meta-analysis (PRISMA-compliant article). Medicine (Baltimore). 2018;97(38):e12401.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nogueira-Barbosa MH, Gregio-Junior E, Lorenzato MM, Guermazi A, Roemer FW, Chagas-Neto FA, et al. Ultrasound assessment of medial meniscal extrusion: a validation study using MRI as reference standard. AJR Am J Roentgenol. 2015;204(3):584–8.

    Article  PubMed  Google Scholar 

  63. Krych AJ, Hevesi M, Leland DP, Stuart MJ. Meniscal root injuries. J Am Acad Orthop Surg. 2020;28(12):491–9.

    Article  PubMed  Google Scholar 

  64. Choi HG, Kang YS, Kim JS, Lee HS, Lee YS. Meniscal and cartilage changes on serial MRI after medial opening-wedge high tibial osteotomy. Orthop J Sports Med. 2021;9(12):23259671211047904.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lee CH, Yang HY, Seon JK. Increased medial meniscus extrusion led to worse clinical outcomes after medial opening-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2022:1–9. Manuscript describing the negative impact of >3 mm meniscus extrusion on outcomes of medial opening-wedge high tibial osteotomies.

  66. Jiang EX, Abouljoud MM, Everhart JS, DiBartola AC, Kaeding CC, Magnussen RA, et al. Clinical factors associated with successful meniscal root repairs: a systematic review. Knee. 2019;26(2):285–91.

    Article  CAS  PubMed  Google Scholar 

  67. Moon HS, Choi CH, Yoo JH, Jung M, Lee TH, Jeon BH, et al. Mild to moderate varus alignment in relation to surgical repair of a medial meniscus root tear: a matched-cohort controlled study with 2 years of follow-up. Am J Sports Med. 2021;49(4):1005–16.

    Article  PubMed  Google Scholar 

  68. Faucett SC, Geisler BP, Chahla J, Krych AJ, Kurzweil PR, Garner AM, et al. Meniscus root repair vs meniscectomy or nonoperative management to prevent knee osteoarthritis after medial meniscus root tears: clinical and economic effectiveness. Am J Sports Med. 2019;47(3):762–9. Manuscript describing the nearly half rate of osteoarthritis and lower costs associated with meniscus root repair as compared to meniscectomy and non-operative treatment.

  69. Kim JH, Chung JH, Lee DH, Lee YS, Kim JR, Ryu KJ. Arthroscopic suture anchor repair versus pullout suture repair in posterior root tear of the medial meniscus: a prospective comparison study. Arthroscopy. 2011;27(12):1644–53.

    Article  PubMed  Google Scholar 

  70. Kaiser JT, Damodar D, Udine MJ, Meeker ZD, McCormick JR, Wagner KR, et al. Meniscal extrusion: a critical analysis review. JBJS Rev. 2022;10(7).

  71. Cinque ME, Chahla J, Moatshe G, Faucett SC, Krych AJ, LaPrade RF. Meniscal root tears: a silent epidemic. Br J Sports Med. 2018;52(13):872–6.

    Article  PubMed  Google Scholar 

  72. Fithian DC, Kelly MA, Mow VC. Material properties and structure-function relationships in the menisci. Clin Orthop Relat Res. 1990;252:19–31.

    Article  Google Scholar 

  73. Cinque ME, Geeslin AG, Chahla J, Dornan GJ, LaPrade RF. Two-tunnel transtibial repair of radial meniscus tears produces comparable results to inside-out repair of vertical meniscus tears. Am J Sports Med. 2017;45(10):2253–9.

    Article  PubMed  Google Scholar 

  74. Cinque ME, DePhillipo NN, Moatshe G, Chahla J, Kennedy MI, Dornan GJ, et al. Clinical outcomes of inside-out meniscal repair according to anatomic zone of the meniscal tear. Orthop J Sports Med. 2019;7(7):2325967119860806.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lee WQ, Gan JZ, Lie DTT. Save the meniscus — clinical outcomes of meniscectomy versus meniscal repair. J Orthop Surg (Hong Kong). 2019;27(2):2309499019849813.

    Article  PubMed  Google Scholar 

  76. Kaplan DJ, Alaia EF, Dold AP, Meislin RJ, Strauss EJ, Jazrawi LM, et al. Increased extrusion and ICRS grades at 2-year follow-up following transtibial medial meniscal root repair evaluated by MRI. Knee Surg Sports Traumatol Arthrosc. 2018;26(9):2826–34.

    Article  PubMed  Google Scholar 

  77. Kohno Y, Koga H, Ozeki N, Matsuda J, Mizuno M, Katano H, et al. Biomechanical analysis of a centralization procedure for extruded lateral meniscus after meniscectomy in porcine knee joints. J Orthop Res. 2022;40(5):1097–103.

    Article  PubMed  Google Scholar 

  78. Koga H, Muneta T, Watanabe T, Mochizuki T, Horie M, Nakamura T, et al. Two-year outcomes after arthroscopic lateral meniscus centralization. Arthroscopy. 2016;32(10):2000–8.

    Article  PubMed  Google Scholar 

  79. Koga H, Nakamura T, Katagiri H, Nakagawa Y, Ozeki N, Ohara T, et al. Two-year outcomes after meniscoplasty by capsular advancement with the application of arthroscopic centralization technique for lateral compartment knee osteoarthritis. Am J Sports Med. 2020;48(13):3154–62.

    Article  PubMed  Google Scholar 

  80. Mochizuki Y, Kawahara K, Samejima Y, Kaneko T, Ikegami H, Musha Y. Short-term results and surgical technique of arthroscopic centralization as an augmentation for medial meniscus extrusion caused by medial meniscus posterior root tear. Eur J Orthop Surg Traumatol. 2021;31(6):1235–41.

    Article  PubMed  Google Scholar 

  81. Kodama Y, Furumatsu T, Okazaki Y, Takihira S, Hiranaka T, Miyazawa S, et al. Transtibial pullout repair of medial meniscus posterior root tears: effects on the meniscus healing score and ICRS grade among patients with mild osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc. 2021;29(9):3001–9.

    Article  PubMed  Google Scholar 

  82. Xue H, Furumatsu T, Hiranaka T, Kintaka K, Higashihara N, Tamura M, et al. Concomitant posterior anchoring further reduces posterior meniscal extrusion during pullout repair of medial meniscus posterior root tears: a retrospective study. Int Orthop. 2022:1–10. Manuscript describing the efficacy of adjunct posterior anchoring at limiting meniscus extrusion after posterior root tear repaired with the transtibial method.

Download references

Funding

This study was partially funded by the following: National Institute of Arthritis and Musculoskeletal and Skin Diseases for the Musculoskeletal Research Training Program (T32AR56950). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron J. Krych.

Ethics declarations

Conflict of Interest

Mark Langhans, Abhinav Lamba, Daniel Saris, Patrick Smith, and Aaron Krych declare they have no conflict of interest.

Aaron Krych voluntarily discloses: Aesculap/B.Braun: research support; American Journal of Sports Medicine: editorial or governing board; Arthrex, Inc: IP royalties; paid consultant; research support; International Cartilage Repair Society: board or committee member; International Society of Arthroscopy, Knee Surgery, and Orthopaedic Sports Medicine: board or committee member. Daniel Saris voluntarily discloses: Cartilage: editorial or governing board; JRF: research support; NewClip: paid consultant. Patrick Smith voluntarily discloses: American Orthopaedic Society for Sports Medicine: board or committee member; Arthrex, Inc: IP royalties; paid consultant; paid presenter or speaker; research support; Associate Editor-Journal of Knee Surgery: editorial or governing board; Spinal Simplicity: stock or stock options.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langhans, M.T., Lamba, A., Saris, D.B.F. et al. Meniscal Extrusion: Diagnosis, Etiology, and Treatment Options. Curr Rev Musculoskelet Med 16, 316–327 (2023). https://doi.org/10.1007/s12178-023-09840-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-023-09840-4

Keywords

Navigation