Skip to main content

Advertisement

Log in

Inhibition of Matrix Metalloproteinases Enhances In Vitro Repair of the Meniscus

  • Original Article
  • Research
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Damage or injury of the meniscus is associated with onset and progression of knee osteoarthritis (OA). The intrinsic repair capacity of the meniscus is inhibited by inflammatory cytokines, such as interleukin-1 (IL-1). Using an in vitro meniscal repair model system, we examined the hypothesis that inhibition of matrix metalloproteinases (MMPs) in the presence of IL-1 will enhance repair of meniscal lesions. Integrative repair of the meniscus was examined between two concentric explants cultured with IL-1 and various MMP inhibitors for 14 days. Throughout the culture period, we assessed total specific MMP activity in the media. At harvest, biomechanical testing to assess the strength of repair and histologic staining were performed. IL-1 decreased the shear strength of repair, as compared with control explants. In the presence of IL-1, the broad-spectrum MMP inhibitor GM 6001 decreased the MMP activity in the media, increased the shear strength of repair, and enhanced tissue repair in the interface. However, individual MMP inhibitors did not alter the shear strength of repair in either the presence or absence of IL-1. These findings suggest IL-1 may inhibit meniscal repair through upregulation of MMPs, but inhibition of multiple MMPs may be necessary to promote integrative meniscal repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–B
Fig. 2
Fig. 3A–F
Fig. 4
Fig. 5A–B
Fig. 6
Fig. 7A–B
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ahmed AM, Burke DL. In-vitro measurement of static pressure distribution in synovial joints—Part I: Tibial surface of the knee. J Biomech Eng. 1983;105:216–225.

    Article  PubMed  CAS  Google Scholar 

  2. Ahsan T, Lottman LM, Harwood F, Amiel D, Sah RL. Integrative cartilage repair: Inhibition by beta-aminopropionitrile. J Orthop Res. 1999;17:850–857.

    Article  PubMed  CAS  Google Scholar 

  3. Arnoczky SP, Warren RF. Microvasculature of the human meniscus. Am J Sports Med. 1982;10:90–95.

    Article  PubMed  CAS  Google Scholar 

  4. Arnoczky SP, Warren RF. The microvasculature of the meniscus and its response to injury: an experimental study in the dog. Am J Sports Med. 1983;11:131–141.

    Article  PubMed  CAS  Google Scholar 

  5. Baker BS, Lubowitz J. Meniscus injuries. Available at: http://www.emedicine.com/sports/TOPIC160.HTM. Accessed August 28, 2007.

  6. Billinghurst RC, Dahlberg L, Ionescu M, Reiner A, Bourne R, Rorabeck C, Mitchell P, Hambor J, Diekmann O, Tschesche H, Chen J, Van Wart H, Poole AR. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest. 1997;99:1534–1545.

    Article  PubMed  CAS  Google Scholar 

  7. Bluteau G, Conrozier T, Mathieu P, Vignon E, Herbage D, Mallein-Gerin F. Matrix metalloproteinase–1, -3, -13 and aggrecanase-1 and -2 are differentially expressed in experimental osteoarthritis. Biochim Biophys Acta. 2001;1526:147–158.

    PubMed  CAS  Google Scholar 

  8. Borkakoti N. Structural studies of matrix metalloproteinases. J Mol Med. 2000;78:261–268.

    Article  PubMed  CAS  Google Scholar 

  9. Bos PK, DeGroot J, Budde M, Verhaar JA, van Osch GJ. Specific enzymatic treatment of bovine and human articular cartilage: implications for integrative cartilage repair. Arthritis Rheum. 2002;46:976–985.

    Article  PubMed  CAS  Google Scholar 

  10. Campbell IK, Last K, Novak U, Lund LR, Hamilton JA. Recombinant human interleukin-1 inhibits plasminogen activator inhibitor-1 (PAI-1) production by human articular cartilage and chondrocytes. Biochem Biophys Res Commun. 1991;174:251–257.

    Article  PubMed  CAS  Google Scholar 

  11. Cao M, Stefanovic-Racic M, Georgescu HI, Miller LA, Evans CH. Generation of nitric oxide by lapine meniscal cells and its effect on matrix metabolism: stimulation of collagen production by arginine. J Orthop Res. 1998;16:104–111.

    Article  PubMed  CAS  Google Scholar 

  12. Cheung HS. Distribution of type I, II, III and V in the pepsin solubilized collagens in bovine menisci. Connect Tissue Res. 1987;16:343–356.

    Article  PubMed  CAS  Google Scholar 

  13. Christoforakis J, Pradhan R, Sanchez-Ballester J, Hunt N, Strachan RK. Is there an association between articular cartilage changes and degenerative meniscus tears? Arthroscopy. 2005;21:1366-1369.

    Article  PubMed  Google Scholar 

  14. Chu SC, Yang SF, Lue KH, Hsieh YS, Li TJ, Lu KH. Naproxen, meloxicam and methylprednisolone inhibit urokinase plasminogen activator and inhibitor and gelatinases expression during the early stage of osteoarthritis. Clin Chim Acta. 2008;387:90–96.

    Article  PubMed  CAS  Google Scholar 

  15. Cruwys SC, Davies DE, Pettipher ER. Co-operation between interleukin-1 and the fibrinolytic system in the degradation of collagen by articular chondrocytes. Br J Pharmacol. 1990;100:631–635.

    PubMed  CAS  Google Scholar 

  16. Deng SJ, Bickett DM, Mitchell JL, Lambert MH, Blackburn RK, Carter HL 3rd, Neugebauer J, Pahel G, Weiner MP, Moss ML. Substrate specificity of human collagenase 3 assessed using a phage-displayed peptide library. J Biol Chem. 2000;275:31422–31427.

    Article  PubMed  Google Scholar 

  17. DiMicco MA, Sah RL. Integrative cartilage repair: adhesive strength is correlated with collagen deposition. J Orthop Res. 2001;19:1105–1112.

    Article  PubMed  CAS  Google Scholar 

  18. DiMicco MA, Waters SN, Akeson WH, Sah RL. Integrative articular cartilage repair: dependence on developmental stage and collagen metabolism. Osteoarthritis Cartilage. 2002;10:218–225.

    Article  PubMed  CAS  Google Scholar 

  19. Eyre DR, Muir H. The distribution of different molecular species of collagen in fibrous, elastic and hyaline cartilages of the pig. Biochem J. 1975;151:595–602.

    PubMed  CAS  Google Scholar 

  20. Fermor B, Jeffcoat D, Hennerbichler A, Pisetsky DS, Weinberg JB, Guilak F. The effects of cyclic mechanical strain and tumor necrosis factor alpha on the response of cells of the meniscus. Osteoarthritis Cartilage. 2004;12:956–962.

    Article  PubMed  Google Scholar 

  21. Ferretti M, Madhavan S, Deschner J, Rath-Deschner B, Wypasek E, Agarwal S. Dynamic biophysical strain modulates proinflammatory gene induction in meniscal fibrochondrocytes. Am J Physiol Cell Physiol. 2006;290:C1610–C1615.

    Article  PubMed  CAS  Google Scholar 

  22. Fujita Y, Hara Y, Nezu Y, Schulz KS, Tagawa M. Proinflammatory cytokine activities, matrix metalloproteinase–3 activity, and sulfated glycosaminoglycan content in synovial fluid of dogs with naturally acquired cranial cruciate ligament rupture. Vet Surg. 2006;35:369–376.

    Article  PubMed  Google Scholar 

  23. Hellio Le Graverand MP, Ou Y, Schield-Yee T, Barclay L, Hart D, Natsume T, Rattner JB. The cells of the rabbit meniscus: their arrangement, interrelationship, morphological variations and cytoarchitecture. J Anat. 2001;198:525–535.

    Article  PubMed  CAS  Google Scholar 

  24. Hennerbichler A, Moutos FT, Hennerbichler D, Weinberg JB, Guilak F. Interleukin-1 and tumor necrosis factor alpha inhibit repair of the porcine meniscus in vitro. Osteoarthritis Cartilage. 2007;15:1053–1060.

    Article  PubMed  CAS  Google Scholar 

  25. Hennerbichler A, Moutos FT, Hennerbichler D, Weinberg JB, Guilak F. Repair response of the inner and outer regions of the porcine meniscus in vitro. Am J Sports Med. 2007;35:754–762.

    Article  PubMed  Google Scholar 

  26. Hoberg M, Uzunmehmetoglu G, Sabic L, Reese S, Aicher WK, Rudert M. [Characterisation of human meniscus cells] [in German]. Z Orthop Ihre Grenzgeb. 2006;144:172–178.

    Article  PubMed  CAS  Google Scholar 

  27. Hopkins SJ, Humphreys M, Jayson MI. Cytokines in synovial fluid I: The presence of biologically active and immunoreactive IL-1. Clin Exp Immunol 1988;72:422–427.

    PubMed  CAS  Google Scholar 

  28. Hu J, Van den Steen PE, Sang QX, Opdenakker G. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug Discov. 2007;6:480–498.

    Article  PubMed  CAS  Google Scholar 

  29. Hunter DJ, Zhang YQ, Niu JB, Tu X, Amin S, Clancy M, Guermazi A, Grigorian M, Gale D, Felson DT. The association of meniscal pathologic changes with cartilage loss in symptomatic knee osteoarthritis. Arthritis Rheum. 2006;54:795–801.

    Article  PubMed  CAS  Google Scholar 

  30. Imler SM, Doshi AN, Levenston ME. Combined effects of growth factors and static mechanical compression on meniscus explant biosynthesis. Osteoarthritis Cartilage. 2004;12:736–744.

    Article  PubMed  Google Scholar 

  31. Janusz MJ, Bendele AM, Brown KK, Taiwo YO, Hsieh L, Heitmeyer SA. Induction of osteoarthritis in the rat by surgical tear of the meniscus: inhibition of joint damage by a matrix metalloproteinase inhibitor. Osteoarthritis Cartilage. 2002;10:785–791.

    Article  PubMed  CAS  Google Scholar 

  32. Kahle P, Saal JG, Schaudt K, Zacher J, Fritz P, Pawelec G. Determination of cytokines in synovial fluids: correlation with diagnosis and histomorphological characteristics of synovial tissue. Ann Rheum Dis. 1992;51:731–734.

    Article  PubMed  CAS  Google Scholar 

  33. Kambic HE, McDevitt CA. Spatial organization of types I and II collagen in the canine meniscus. J Orthop Res. 2005;23:142–149.

    Article  PubMed  CAS  Google Scholar 

  34. Knauper V, Cowell S, Smith B, Lopez-Otin C, O’Shea M, Morris H, Zardi L, Murphy G. The role of the c-terminal domain of human collagenase–3 (MMP-13) in the activation of procollagenase-3, substrate specificity, and tissue inhibitor of metalloproteinase interaction. J Biol Chem. 1997;272:7608–7616.

    Article  PubMed  CAS  Google Scholar 

  35. Knauper V, Lopez-Otin C, Smith B, Knight G, Murphy G. Biochemical characterization of human collagenase-3. J Biol Chem. 1996;271:1544–1550.

    Article  PubMed  CAS  Google Scholar 

  36. Krzeski P, Buckland-Wright C, Balint G, Cline GA, Stoner K, Lyon R, Beary J, Aronstein WS, Spector TD. Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12-month, double-blind, placebo-controlled study. Arthritis Res Ther. 2007;9:R109.

    Article  PubMed  CAS  Google Scholar 

  37. Lohmander LS, Roos H, Dahlberg L, Hoerrner LA, Lark MW. Temporal patterns of stromelysin-1, tissue inhibitor, and proteoglycan fragments in human knee joint fluid after injury to the cruciate ligament or meniscus. J Orthop Res. 1994;12:21–28.

    Article  PubMed  CAS  Google Scholar 

  38. Lotz M. Cytokines in cartilage injury and repair. Clin Orthop Relat Res. 2001;391(suppl):S108–S115.

    Google Scholar 

  39. Markolf KL, Bargar WL, Shoemaker SC, Amstutz HC. The role of joint load in knee stability. J Bone Joint Surg Am. 1981;63:570–585.

    PubMed  CAS  Google Scholar 

  40. McNulty AL, Guilak F. Integrative repair of the meniscus: lessons from in vitro studies. Biorheology. 2008;45:487–500.

    PubMed  Google Scholar 

  41. McNulty AL, Moutos FT, Weinberg JB, Guilak F. Enhanced integrative repair of the porcine meniscus in vitro by inhibition of interleukin–1 or tumor necrosis factor alpha. Arthritis Rheum. 2007;56:3033–3042.

    Article  PubMed  CAS  Google Scholar 

  42. Mengshol JA, Mix KS, Brinckerhoff CE. Matrix metalloproteinases as therapeutic targets in arthritic diseases: bull’s-eye or missing the mark? Arthritis Rheum. 2002;46:13–20.

    Article  PubMed  CAS  Google Scholar 

  43. Milner JM, Elliott SF, Cawston TE. Activation of procollagenases is a key control point in cartilage collagen degradation: interaction of serine and metalloproteinase pathways. Arthritis Rheum. 2001;44:2084–2096.

    Article  PubMed  CAS  Google Scholar 

  44. Mitchell PG, Magna HA, Reeves LM, Lopresti-Morrow LL, Yocum SA, Rosner PJ, Geoghegan KF, Hambor JE. Cloning, expression, and type ii collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest. 1996;97:761–768.

    Article  PubMed  CAS  Google Scholar 

  45. Nagase H, Woessner JF, Jr. Matrix metalloproteinases. J Biol Chem. 1999;274:21491–21494.

    Article  PubMed  CAS  Google Scholar 

  46. Ohuchi E, Imai K, Fujii Y, Sato H, Seiki M, Okada Y. Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol Chem. 1997;272:2446–2451.

    Article  PubMed  CAS  Google Scholar 

  47. Rasmussen FH, Yeung N, Kiefer L, Murphy G, Lopez-Otin C, Vitek MP, Moss ML. Use of a multiple-enzyme/multiple-reagent assay system to quantify activity levels in samples containing mixtures of matrix metalloproteinases. Biochemistry. 2004;43:2987–2995.

    Article  PubMed  CAS  Google Scholar 

  48. Reboul P, Pelletier JP, Tardif G, Cloutier JM, Martel-Pelletier J. The new collagenase, collagenase-3, is expressed and synthesized by human chondrocytes but not by synoviocytes: a role in osteoarthritis. J Clin Invest. 1996;97:2011–2019.

    Article  PubMed  CAS  Google Scholar 

  49. Roos H, Lauren M, Adalberth T, Roos EM, Jonsson K, Lohmander LS. Knee osteoarthritis after meniscectomy: prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis Rheum. 1998;41:687–693.

    Article  PubMed  CAS  Google Scholar 

  50. Saito S, Katoh M, Masumoto M, Matsumoto S, Masuho Y. Collagen degradation induced by the combination of IL-1alpha and plasminogen in rabbit articular cartilage explant culture. J Biochem. 1997;122:49–54.

    PubMed  CAS  Google Scholar 

  51. Shin SJ, Fermor B, Weinberg JB, Pisetsky DS, Guilak F. Regulation of matrix turnover in meniscal explants: role of mechanical stress, interleukin-1, and nitric oxide. J Appl Physiol. 2003;95:308–313.

    PubMed  CAS  Google Scholar 

  52. Upton ML, Chen J, Guilak F, Setton LA. Differential effects of static and dynamic compression on meniscal cell gene expression. J Orthop Res. 2003;21:963–969.

    Article  PubMed  CAS  Google Scholar 

  53. Upton ML, Chen J, Setton LA. Region-specific constitutive gene expression in the adult porcine meniscus. J Orthop Res. 2006;24:1562–1570.

    Article  PubMed  CAS  Google Scholar 

  54. van den Berg WB, Joosten LA, van de Loo FA. TNF alpha and IL-1 beta are separate targets in chronic arthritis. Clin Exp Rheumatol. 1999;17(6 suppl 18):S105–S114.

    Google Scholar 

  55. Vankemmelbeke M, Dekeyser PM, Hollander AP, Buttle DJ, Demeester J. Characterization of helical cleavages in type II collagen generated by matrixins. Biochem J. 1998;330(pt 2):633–640.

    PubMed  CAS  Google Scholar 

  56. Wilson CG, Palmer AW, Zuo F, Eugui E, Wilson S, Mackenzie R, Sandy JD, Levenston ME. Selective and non-selective metalloproteinase inhibitors reduce IL-1-induced cartilage degradation and loss of mechanical properties. Matrix Biol. 2007;26:259–268.

    Article  PubMed  CAS  Google Scholar 

  57. Wilson CG, Zuo F, Sandy JD, Levenston ME. Inhibition of MMPs, but not of ADAMTS-4 and -5, reduces IL-1 stimulated fibrocartilage degradation. Trans Orthop Res Soc. 2006;31:0031.

    Google Scholar 

  58. Wilusz RE, Weinberg JB, Guilak F, McNulty AL. Inhibition of integrative repair of the meniscus following acute exposure to interleukin-1 in vitro. J Orthop Res. 2008;26:504–512.

    Article  PubMed  CAS  Google Scholar 

  59. Wojtys EM, Chan DB. Meniscus structure and function. Instr Course Lect. 2005;54:323–330.

    PubMed  Google Scholar 

  60. Wyland DJ, Guilak F, Elliott DM, Setton LA, Vail TP. Chondropathy after meniscal tear or partial meniscectomy in a canine model. J Orthop Res. 2002;20:996–1002.

    Article  PubMed  Google Scholar 

  61. Yang SF, Hsieh YS, Lue KH, Chu SC, Chang IC, Lu KH. Effects of nonsteroidal anti-inflammatory drugs on the expression of urokinase plasminogen activator and inhibitor and gelatinases in the early osteoarthritic knee of humans. Clin Biochem. 2008;41:109–116.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Rebecca Wilusz for technical assistance and Franklin Moutos for assistance with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshid Guilak PhD.

Additional information

One or more of the authors have received funding from the Arthritis Foundation (ALM, FG), VA Rehabilitation Research Service Award (JBW), and NIH Grants AR50245 (FG), AG15768 (FG), AR48182 (FG), AR48852 (FG), and AR55434 (ALM).

About this article

Cite this article

McNulty, A.L., Weinberg, J.B. & Guilak, F. Inhibition of Matrix Metalloproteinases Enhances In Vitro Repair of the Meniscus. Clin Orthop Relat Res 467, 1557–1567 (2009). https://doi.org/10.1007/s11999-008-0596-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-008-0596-6

Keywords

Navigation