Skip to main content
Log in

Application of Metabolomics to Osteoarthritis: from Basic Science to the Clinical Approach

  • Osteoarthritis (M Goldring, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Osteoarthritis (OA) is a multifactorial and progressive disease affecting whole synovial joint. The extract pathogenic mechanisms and diagnostic biomarkers of OA remain unclear. In this article, we review the studies related to metabolomics of OA, discuss the biomarkers as a tool for early OA diagnosis. Furthermore, we examine the major studies on the application of metabolomics methodology in the complex context of OA and create a bridge from findings in basic science to their clinical utility.

Recent Findings

Recently, the tissue metabolomics signature permits a view into transitional phases between the healthy and OA joint. Both nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry-based metabolomics approaches have been used to interrogate the metabolic alterations that may indicate the complex progression of OA. Specifically, studies on alterations pertaining to lipids, glucose, and amino acid metabolism have aided in the understanding of the complex pathogenesis of OA.

Summary

The discovery of identified metabolites could be important for diagnosis and staging of OA, as well as for the assessment of efficacy of new drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. National Clinical Guideline Centre (UK). Osteoarthritis:Care and Management in Adults. London: National Institute for Health and Care Excellence (UK); 2014 Feb. (NICE Clinical Guidelines, No. 177.) Available from: https://www.ncbi.nlm.nih.gov/books/NBK248069/.

  2. Glyn-Jones S, Palmer AJR, Agricola R, Price AJ, Vincent TL, Weinans H, et al. Osteoarthritis. Lancet. 2015;386(9991):376–87. https://doi.org/10.1016/S0140-6736(14)60802-3.

    Article  CAS  PubMed  Google Scholar 

  3. Messier SP, Gutekunst DJ, Davis C, DeVita P. Weight loss reduces knee-joint loads in overweight and obese older adults with knee osteoarthritis. Arthritis Rheum. 2005;52(7):2026–32. https://doi.org/10.1002/art.21139.

    Article  PubMed  Google Scholar 

  4. Prieto-Alhambra D, Judge A, Javaid MK, Cooper C, Diez-Perez A, Arden NK. Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: influences of age, gender and osteoarthritis affecting other joints. Ann Rheum Dis. 2014;73(9):1659–64.

    Article  PubMed  Google Scholar 

  5. Sturmer T, Gunther KP, Brenner H. Obesity, overweight and patterns of osteoarthritis: the Ulm osteoarthritis study. J Clin Epidemiol. 2000;53(3):307–13.

    Article  CAS  PubMed  Google Scholar 

  6. Yusuf E. Metabolic factors in osteoarthritis: obese people do not walk on their hands. Arthritis Research & Therapy. 2012;14(4):123.

    Article  CAS  Google Scholar 

  7. Panicker V. Genetics of thyroid function and disease. Clin Biochem Rev. 2011;32(4):165.

    PubMed  PubMed Central  Google Scholar 

  8. Wang RN, Green J, Wang Z, Deng Y, Qiao M, Peabody M, et al. Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes Dis. 2014;1(1):87–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ramos YF, Bos SD, Lakenberg N, Bohringer S, den Hollander WJ, Kloppenburg M, et al. Genes expressed in blood link osteoarthritis with apoptotic pathways. Ann Rheum Dis. 2014;73(10):1844–53. https://doi.org/10.1136/annrheumdis-2013-203405.

    Article  CAS  PubMed  Google Scholar 

  10. Valdes AM, Spector TD. The genetic epidemiology of osteoarthritis. Curr Opin Rheumatol. 2010;22(2):139–43.

    Article  PubMed  Google Scholar 

  11. Bondeson J, Wainwright SD, Lauder S, Amos N, Hughes CE. The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis. Arthritis Res Ther. 2006;8(6):R187. https://doi.org/10.1186/ar2099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goldring MB. The role of cytokines as inflammatory mediators in osteoarthritis: lessons from animal models. Connect Tissue Res. 1999;40(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  13. Alaaeddine N, Di Battista JA, Pelletier JP, Kiansa K, Cloutier JM, Martel-Pelletier J. Inhibition of tumor necrosis factor α–induced prostaglandin E2 production by the antiinflammatory cytokines interleukin-4, interleukin-10, and interleukin-13 in osteoarthritic synovial fibroblasts: distinct targeting in the signaling pathways. Arthritis Rheum. 1999;42(4):710–8.

    Article  CAS  PubMed  Google Scholar 

  14. Williams RO, Marinova-Mutafchieva L, Feldmann M, Maini RN. Evaluation of TNF-alpha and IL-1 blockade in collagen-induced arthritis and comparison with combined anti-TNF-alpha/anti-CD4 therapy. J Immunol. 2000;165(12):7240–5.

    Article  CAS  PubMed  Google Scholar 

  15. Zheng W, Chen C, Zhang C, Cai L, Chen H. The protective effect of phloretin in osteoarthritis: an in vitro and in vivo study. Food Funct. 2018;9(1):263–78.

    Article  CAS  PubMed  Google Scholar 

  16. Mont MA, Seyler TM, Ragland PS, Starr R, Erhart J, Bhave A. Gait analysis of patients with resurfacing hip arthroplasty compared with hip osteoarthritis and standard total hip arthroplasty. J Arthroplast. 2007;22(1):100–8.

    Article  Google Scholar 

  17. Bruyère O, Ethgen O, Neuprez A, Zegels B, Gillet P, Huskin J-P, et al. Health-related quality of life after total knee or hip replacement for osteoarthritis: a 7-year prospective study. Arch Orthop Trauma Surg. 2012;132(11):1583–7.

    Article  PubMed  Google Scholar 

  18. Stambough J, Clohisy J, Barrack R, Nunley R, Keeney J. Increased risk of failure following revision total knee replacement in patients aged 55 years and younger. Bone Joint J. 2014;96(12):1657–62.

    Article  PubMed  Google Scholar 

  19. Nepple JJ, Thomason KM, An TW, Harris-Hayes M, Clohisy JC. What is the utility of biomarkers for assessing the pathophysiology of hip osteoarthritis? A systematic review. Clin Orthop Relat Res. 2015;473(5):1683–701. https://doi.org/10.1007/s11999-015-4148-6.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM. Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem. 2006;78(13):4430–42.

    Article  CAS  PubMed  Google Scholar 

  21. Huber M, Trattnig S, Lintner F. Anatomy, biochemistry, and physiology of articular cartilage. Investig Radiol. 2000;35(10):573–80. https://doi.org/10.1097/00004424-200010000-00003.

    Article  CAS  Google Scholar 

  22. Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sport Health. 2009;1(6):461–8.

    Article  Google Scholar 

  23. Borel M, Pastoureau P, Papon J, Madelmont JC, Moins N, Maublant J, et al. Longitudinal profiling of articular cartilage degradation in osteoarthritis by high-resolution magic angle spinning H-1 NMR Spectroscopy: experimental study in the meniscectomized Guinea pig model. J Proteome Res. 2009;8(5):2594–600. https://doi.org/10.1021/pr8009963.

    Article  CAS  PubMed  Google Scholar 

  24. Bhattacharjee A, Bansal M. Collagen structure: the Madras Triple Helix and the current scenario. IUBMB Life. 2005;57(3):161–72. https://doi.org/10.1080/15216540500090710.

    Article  CAS  PubMed  Google Scholar 

  25. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95. https://doi.org/10.1067/mcp.2001.113989.

    Article  Google Scholar 

  26. Nguyen LT, Sharma AR, Chakraborty C, Saibaba B, Ahn M-E, Lee S-S. Review of prospects of biological fluid biomarkers in osteoarthritis. Int J Mol Sci. 2017;18(3):601.

    Article  PubMed Central  Google Scholar 

  27. Deidda M, Piras C, Bassareo PP, Dessalvi CC, Mercuro G. Metabolomics, a promising approach to translational research in cardiology. IJC Metab Endocr. 2015;9:31–8.

    Article  Google Scholar 

  28. Sabatine MS, Liu E, Morrow DA, Heller E, McCarroll R, Wiegand R, et al. Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation. 2005;112(25):3868–75.

    Article  CAS  PubMed  Google Scholar 

  29. Blekherman G, Laubenbacher R, Cortes DF, Mendes P, Torti FM, Akman S, et al. Bioinformatics tools for cancer metabolomics. Metabolomics. 2011;7(3):329–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mickiewicz B, Kelly JJ, Ludwig TE, Weljie AM, Wiley JP, Schmidt TA, et al. Metabolic analysis of knee synovial fluid as a potential diagnostic approach for osteoarthritis. J Orthop Res. 2015;33(11):1631–8. https://doi.org/10.1002/jor.22949.

    Article  PubMed  Google Scholar 

  31. Stryeck S, Birner-Gruenberger R, Madl T. Integrative metabolomics as emerging tool to study autophagy regulation. Microbial Cell. 2017;4(8):240–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Patti GJ, Yanes O, Siuzdak G. Metabolomics: the apogee of the omic triology. Nat Rev Mol Cell Biol. 2012;13(4):263–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kang J, Lee S, Kang S, Kwon HN, Park JH, Kwon SW, et al. NMR-based metabolomics approach for the differentiation of ginseng (Panax ginseng) roots from different origins. Arch Pharm Res. 2008;31(3):330–6.

    Article  CAS  PubMed  Google Scholar 

  34. Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev. 2007;26(1):51–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morris C, O’Grada C, Ryan M, Roche HM, Gibney MJ, Gibney ER, et al. The relationship between BMI and metabolomic profiles: a focus on amino acids. Proc Nutr Soc. 2012;71(4):634–8.

    Article  CAS  PubMed  Google Scholar 

  36. • Marchev AS, Dimitrova PA, Burns AJ, Kostov RV, Dinkova-Kostova AT, Georgiev MI. Oxidative stress and chronic inflammation in osteoarthritis: can NRF2 counteract these partners in crime? Ann N Y Acad Sci. 2017;1401(1):114–35. https://doi.org/10.1111/nyas.13407. This study provides a detailed description of how oxidative stress and inflammation processess are counteracted by transcription factor nuclear factor erythroid p45–related factor 2 (NRF2) during OA progression.

    Article  CAS  PubMed  Google Scholar 

  37. Shet K, Siddiqui SM, Yoshihara H, Kurhanewicz J, Ries M, Li X. High-resolution magic angle spinning NMR spectroscopy of human osteoarthritic cartilage: HR-MAS NMR SPECTROSCOPY OF HUMAN OSTEOARTHRITIC CARTILAGE. NMR Biomed. 2012;25(4):538–44. https://doi.org/10.1002/nbm.1769.

    Article  PubMed  Google Scholar 

  38. Lamers RJAN, van Nesselrooij JHJ, Kraus VB, Jordan JM, Renner JB, Dragomir AD, et al. Identification of an urinary metabolite profile associated with osteoarthritis. Osteoarthr Cartil. 2005;13(9):762–8. https://doi.org/10.1016/j.joca.2005.04.005.

    Article  CAS  PubMed  Google Scholar 

  39. Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc. 2007;2(11):2692–703. https://doi.org/10.1038/nprot.2007.376.

    Article  CAS  PubMed  Google Scholar 

  40. Jonasdottir HS, Ioan-Facsinay A, Kwekkeboom J, Brouwers H, Zuurmond AM, Toes R, et al. An advanced LC-MS/MS platform for the analysis of specialized pro-resolving lipid mediators. Chromatographia. 2015;78(5–6):391–401. https://doi.org/10.1007/s10337-014-2779-5.

    Article  CAS  Google Scholar 

  41. Wilson ID, Plumb R, Granger J, Major H, Williams R, Lenz EM. HPLC-MS-based methods for the study of metabonomics. J Chromatogr B. 2005;817(1):67–76. https://doi.org/10.1016/j.jchromb.2004.07.045.

    Article  CAS  Google Scholar 

  42. Halket JM, Waterman D, Przyborowska AM, Patel RK, Fraser PD, Bramley PM. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot. 2004;56(410):219–43.

    Article  PubMed  Google Scholar 

  43. Tennessen JM, Barry WE, Cox J, Thummel CS. Methods for studying metabolism in drosophila. Methods. 2014;68(1):105–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Moco S, Vervoort J, Bino RJ, De Vos RC, Bino R. Metabolomics technologies and metabolite identification. TrAC Trends Anal Chem. 2007;26(9):855–66.

    Article  CAS  Google Scholar 

  45. Yusof NA, Isha A, Ismail IS, Khatib A, Shaari K, Abas F, et al. Infrared-metabolomics approach in detecting changes in Andrographis paniculata metabolites due to different harvesting ages and times. J Sci Food Agric. 2015;95(12):2533–43. https://doi.org/10.1002/jsfa.6987.

    Article  CAS  PubMed  Google Scholar 

  46. Cherney DP, Ekman DR, Dix DJ, Collette TW. Raman spectroscopy-based metabolomics for differentiating exposures to triazole fungicides using rat urine. Anal Chem. 2007;79(19):7324–32. https://doi.org/10.1021/ac070856n.

    Article  CAS  PubMed  Google Scholar 

  47. Roberts MJ, Schirra H, Lavin MF, Gardiner RA. NMR-based metabolomics: global analysis of metabolites to address problems in prostate. cancer. 2014.

  48. Trammell SA, Brenner C. Targeted, LCMS-based metabolomics for quantitative measurement of NAD(+) metabolites. Computational and Structural Biotechnology Journal. 2013;4(5):e201301012. https://doi.org/10.5936/csbj.201301012.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Patti GJ. Separation strategies for untargeted metabolomics. J Sep Sci. 2011;34(24):3460–9.

    Article  CAS  PubMed  Google Scholar 

  50. Lu W, Su X, Klein MS, Lewis IA, Fiehn O, Rabinowitz JD. Metabolite measurement: pitfalls to avoid and practices to follow. Annu Rev Biochem. 2017;86:277–304. https://doi.org/10.1146/annurev-biochem-061516-044952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rojo D, Barbas C, Rupérez FJ. LC–MS metabolomics of polar compounds. Bioanalysis. 2012;4(10):1235–43.

    Article  CAS  PubMed  Google Scholar 

  52. Lu W, Bennett BD, Rabinowitz JD. Analytical strategies for LC–MS-based targeted metabolomics. J Chromatogr B. 2008;871(2):236–42.

    Article  CAS  Google Scholar 

  53. •• Kim S, Hwang J, Kim J, Ahn JK, Cha HS, Kim KH. Metabolite profiles of synovial fluid change with the radiographic severity of knee osteoarthritis. Joint Bone Spine. 2017;84(5):605–10. https://doi.org/10.1016/j.jbspin.2016.05.018. This study investigates a global metabolite profiles in the synovial fluid of osteoarthritis patients at different disease stages using gas-chromatography/time-of-flight mass spectrometry and revealed that altered metabolites is associated with OA progression.

    Article  CAS  PubMed  Google Scholar 

  54. Blanco FJ, Ruiz-Romero C. Osteoarthritis: metabolomic characterization of metabolic phenotypes in OA. Nat Rev Rheumatol. 2012;8(3):130–2. https://doi.org/10.1038/nrrheum.2012.11.

    Article  CAS  PubMed  Google Scholar 

  55. •• Carlson AK, Rawle RA, Adams E, Greenwood MC, Bothner B, June RK. Application of global metabolomic profiling of synovial fluid for osteoarthritis biomarkers. Biochem Biophys Res Commun. 2018;499(2):182–8. https://doi.org/10.1016/j.bbrc.2018.03.117. This pilot study provides a global metabolic profiles (a total of 1098 metabolites) of OA patient synovial fluid using LC-MS and demonstrates the advantages of global metabolomic profiling for both biomarker discovery and further understanding of OA pathogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lamers RJ, van Nesselrooij JH, Kraus VB, Jordan JM, Renner JB, Dragomir AD, et al. Identification of an urinary metabolite profile associated with osteoarthritis. Osteoarthr Cart. 2005;13(9):762–8. https://doi.org/10.1016/j.joca.2005.04.005.

    Article  CAS  Google Scholar 

  57. Loeser RF, Pathmasiri W, Sumner SJ, McRitchie S, Beavers D, Saxena P, et al. Association of urinary metabolites with radiographic progression of knee osteoarthritis in overweight and obese adults: an exploratory study. Osteoarthr Cartil. 2016;24(8):1479–86. https://doi.org/10.1016/j.joca.2016.03.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. • Xu Z, Chen T, Luo J, Ding S, Gao S, Zhang J. Cartilaginous metabolomic study reveals potential mechanisms of osteophyte formation in osteoarthritis. J Proteome Res. 2017;16(4):1425–35. https://doi.org/10.1021/acs.jproteome.6b00676. This study explores that phenylalanine-to-taurine conversion in phenylalanine metabolism might play an important role in the procedure of osteophyte formation and provides a further direction of targeted metabolomic study.

    Article  CAS  PubMed  Google Scholar 

  59. Xu YF, Lu WY, Rabinowitz JD. Avoiding misannotation of in-source fragmentation products as cellular metabolites in liquid chromatography-mass spectrometry-based metabolomics. Anal Chem. 2015;87(4):2273–81. https://doi.org/10.1021/ac504118y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sussulini A. Metabolomics: from fundamentals to clinical applications. vol Book, Whole. Cham, Springer; 2017.

  61. Zimmermann D, Hartmann M, Moyer MP, Nolte J, Baumbach JI. Determination of volatile products of human colon cell line metabolism by GC/MS analysis. Metabolomics. 2007;3(1):13–7.

    Article  CAS  Google Scholar 

  62. Orata F. Derivatization reactions and reagents for gas chromatography analysis. Advanced gas chromatography-progress in agricultural, biomedical and industrial applications. London: InTech; 2012.

    Google Scholar 

  63. Kaspar H, Dettmer K, Gronwald W, Oefner PJ. Automated GC-MS analysis of free amino acids in biological fluids. J Chromatogr B Anal Technol Biomed Life Sci. 2008;870(2):222–32. https://doi.org/10.1016/j.jchromb.2008.06.018.

    Article  CAS  Google Scholar 

  64. Zhang A, Sun H, Wang P, Han Y, Wang X. Modern analytical techniques in metabolomics analysis. Analyst. 2012;137(2):293–300.

    Article  CAS  PubMed  Google Scholar 

  65. • de Sousa EB, Dos Santos GCJ, Duarte MEL, Moura VN, Aguiar DP. Metabolomics as a promising tool for early osteoarthritis diagnosis. Braz J Med Biol Res. 2017;50(11):e6485. https://doi.org/10.1590/1414-431x20176485. This study provides an review of the studies in osteoarthritis animal models and patients regarding the use of metabolomics as a promising tool for early OA diagnosis and detection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dale BM, Brown MA, Semelka RC. MRI: basic principles and applications. vol Book, Whole. Hoboken: Wiley Blackwell; 2015.

    Book  Google Scholar 

  67. Kumar D. Nuclear magnetic resonance (NMR) spectroscopy for metabolic profiling of medicinal plants and their products. Crit Rev Anal Chem. 2016;46(5):400–12. https://doi.org/10.1080/10408347.2015.1106932.

    Article  CAS  PubMed  Google Scholar 

  68. Balci M. Basic 1H- and 13C-NMR spectroscopy, vol. Book, Whole. 1st ed. Amsterdam: Elsevier; 2005.

    Google Scholar 

  69. Donald W, McRobbie EAM, Graves MJ, Prince MR. MRI from picture to proton. 2nd ed. Cambridge: Cambridge University Press; 2006.

    Google Scholar 

  70. Günther H. NMR spectroscopy: basic principles, concepts, and applications in chemistry. Third, completely revise and update, vol. Book, Whole. 3rd ed. Weinheim: Wiley-VCH; 2013.

    Google Scholar 

  71. Chatham JC, Blackband SJ. Nuclear magnetic resonance spectroscopy and imaging in animal research. ILAR J. 2001;42(3):189–208.

    Article  CAS  PubMed  Google Scholar 

  72. Duer MJ, Wiley I. Solid-state NMR spectroscopy: principles and applications, vol. Book, Whole. Malden: Blackwell Science; 2002.

    Google Scholar 

  73. Kruk J, Doskocz M, Jodlowska E, Zacharzewska A, Lakomiec J, Czaja K, et al. NMR techniques in metabolomic studies: a quick overview on examples of utilization. Appl Magn Reson. 2017;48(1):1–21. https://doi.org/10.1007/s00723-016-0846-9.

    Article  CAS  PubMed  Google Scholar 

  74. James TL. Fundamentals of NMR. Online Textbook. San Francisco: Department of Pharmaceutical Chemistry, University of California; 1998. p. 1–31.

    Google Scholar 

  75. Bakhmutov VI. NMR spectroscopy in liquids and solids, vol. Book, Whole. Oakville: CRC Press; 2015.

    Book  Google Scholar 

  76. Klinowski J. Magic-angle-spinning NMR. Solid State Ionics. 1985;16:3–14.

    Article  CAS  Google Scholar 

  77. Wang Y, Holmes E, Lindon JC, Beckonert O, Keun HC, Ebbels TMD, et al. High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat Protoc. 2010;5(6):1019–32. https://doi.org/10.1038/nprot.2010.45.

    Article  CAS  PubMed  Google Scholar 

  78. Li FX, Voccio JP, Sammartino M, Ahn MC, Hahn S, Bascunan J, et al. A theoretical design approach for passive shimming of a magic-angle-spinning NMR magnet. IEEE Trans Appl Supercond. 2016;26(4):1–4. https://doi.org/10.1109/TASC.2015.2512540.

    Article  Google Scholar 

  79. Shortt C, Hasselwander O, Meynier A, Nauta A, Fernandez EN, Putz P, et al. Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients. Eur J Nutr. 2018;57(1):25–49. https://doi.org/10.1007/s00394-017-1546-4.

    Article  CAS  PubMed  Google Scholar 

  80. Barouei J, Bendiks Z, Martinic A, Mishchuk D, Heeney D, Hsieh YH, et al. Microbiota, metabolome, and immune alterations in obese mice fed a high fat diet containing type 2 resistant starch. Mol Nutr Food Res. 2017;61. https://doi.org/10.1002/mnfr.201700184.

    Article  Google Scholar 

  81. Maher AD, Coles C, White J, Bateman JF, Fuller ES, Burkhardt D, et al. 1H NMR spectroscopy of serum reveals unique metabolic fingerprints associated with subtypes of surgically induced osteoarthritis in sheep. J Proteome Res. 2012;11(8):4261–8. https://doi.org/10.1021/pr300368h.

    Article  CAS  PubMed  Google Scholar 

  82. Blanco FJ. Osteoarthritis year in review 2014: we need more biochemical biomarkers in qualification phase. Osteoarthr Cartil. 2014;22(12):2025–32. https://doi.org/10.1016/j.joca.2014.09.009.

    Article  PubMed  Google Scholar 

  83. Chang C, Werb Z. The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol. 2001;11(11):S37–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Blom AB, van Lent PL, Libregts S, Holthuysen AE, van der Kraan PM, van Rooijen N, et al. Crucial role of macrophages in matrix metalloproteinase–mediated cartilage destruction during experimental osteoarthritis: involvement of matrix metalloproteinase 3. Arthritis Rheumatol. 2007;56(1):147–57.

    Article  CAS  Google Scholar 

  85. Gobezie R, Kho A, Krastins B, Sarracino DA, Thornhill TS, Chase M, et al. High abundance synovial fluid proteome: distinct profiles in health and osteoarthritis. Arthritis Res Ther. 2007;9(2):R36. https://doi.org/10.1186/ar2172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ritter SY, Subbaiah R, Bebek G, Crish J, Scanzello CR, Krastins B, et al. Proteomic analysis of synovial fluid from the osteoarthritic knee: comparison with transcriptome analyses of joint tissues. Arthritis Rheum. 2013;65(4):981–92. https://doi.org/10.1002/art.37823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Balakrishnan L, Nirujogi RS, Ahmad S, Bhattacharjee M, Manda SS, Renuse S, et al. Proteomic analysis of human osteoarthritis synovial fluid. Clin Proteomics. 2014;11(1):6. https://doi.org/10.1186/1559-0275-11-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. O'Shea NR, Chew TS, Dunne J, Marnane R, Nedjat-Shokouhi B, Smith PJ, et al. Critical role of the disintegrin metalloprotease ADAM-like Decysin-1 [ADAMDEC1] for intestinal immunity and inflammation. J Crohns Colitis. 2016;10(12):1417–27. https://doi.org/10.1093/ecco-jcc/jjw111.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Manferdini C, Paolella F, Gabusi E, Silvestri Y, Gambari L, Cattini L, et al. From osteoarthritic synovium to synovial-derived cells characterization: synovial macrophages are key effector cells. Arthritis Res Ther. 2016;18(1):83.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol. 2010;6(11):625–35.

    Article  CAS  PubMed  Google Scholar 

  91. Benito MJ, Veale DJ, FitzGerald O, van den Berg WB, Bresnihan B. Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis. 2005;64(9):1263–7. https://doi.org/10.1136/ard.2004.025270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. van Lent PL, Blom AB, Schelbergen RF, Sloetjes A, Lafeber FP, Lems WF, et al. Active involvement of alarmins S100A8 and S100A9 in the regulation of synovial activation and joint destruction during mouse and human osteoarthritis. Arthritis Rheum. 2012;64(5):1466–76. https://doi.org/10.1002/art.34315.

    Article  CAS  PubMed  Google Scholar 

  93. Epelman S, Lavine KJ, Randolph GJ. Origin and functions of tissue macrophages. Immunity. 2014;41(1):21–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Konttinen YT, Pajarinen J, Takakubo Y, Gallo J, Nich C, Takagi M, et al. Macrophage polarization and activation in response to implant debris: influence by “particle disease” and “ion disease”. J Long-Term Eff Med Implants. 2014;24(4):267–81.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ammitzboll CG, Thiel S, Ellingsen T, Deleuran B, Jorgensen A, Jensenius JC, et al. Levels of lectin pathway proteins in plasma and synovial fluid of rheumatoid arthritis and osteoarthritis. Rheumatol Int. 2012;32(5):1457–63. https://doi.org/10.1007/s00296-011-1879-x.

    Article  CAS  PubMed  Google Scholar 

  96. Schelbergen RF, de Munter W, van den Bosch MH, Lafeber FP, Sloetjes A, Vogl T, et al. Alarmins S100A8/S100A9 aggravate osteophyte formation in experimental osteoarthritis and predict osteophyte progression in early human symptomatic osteoarthritis. Ann Rheum Dis. 2016;75(1):218–25. https://doi.org/10.1136/annrheumdis-2014-205480.

    Article  CAS  PubMed  Google Scholar 

  97. Williamson MP, Humm G, Crisp AJ. 1H nuclear magnetic resonance investigation of synovial fluid components in osteoarthritis, rheumatoid arthritis and traumatic effusions. Br J Rheumatol. 1989;28(1):23–7.

    Article  CAS  PubMed  Google Scholar 

  98. Damyanovich AZ, Staples JR, Chan ADM, Marshall KW. Comparative study of normal and osteoarthritic canine synovial fluid using 500 MHz H-1 magnetic resonance spectroscopy. J Orthop Res. 1999;17(2):223–31.

    Article  CAS  PubMed  Google Scholar 

  99. Ryan D, Robards K, Prenzler PD, Kendall M. Recent and potential developments in the analysis of urine: a review. Anal Chim Acta. 2011;684(1):8–20. https://doi.org/10.1016/j.aca.2010.10.035.

    Article  CAS  PubMed  Google Scholar 

  100. Zhang A, Sun H, Wu X, Wang X. Urine metabolomics. Clin Chim Acta. 2012;414:65–9. https://doi.org/10.1016/j.cca.2012.08.016.

    Article  CAS  PubMed  Google Scholar 

  101. Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16(4):494–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Messier SP, Mihalko SL, Legault C, Miller GD, Nicklas BJ, DeVita P, et al. Effects of intensive diet and exercise on knee joint loads, inflammation, and clinical outcomes among overweight and obese adults with knee osteoarthritis: the IDEA randomized clinical trial. JAMA. 2013;310(12):1263–73. https://doi.org/10.1001/jama.2013.277669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Krishnasamy P, Hall M, Robbins SR. The role of skeletal muscle in the pathophysiology and management of knee osteoarthritis. Rheumatology (Oxford, England). 2018;57:iv22–33. https://doi.org/10.1093/rheumatology/kex515.

    Article  CAS  Google Scholar 

  104. Priori R, Scrivo R, Brandt J, Valerio M, Casadei L, Valesini G, et al. Metabolomics in rheumatic diseases: the potential of an emerging methodology for improved patient diagnosis, prognosis, and treatment efficacy. Autoimmun Rev. 2013;12(10):1022–30. https://doi.org/10.1016/j.autrev.2013.04.002.

    Article  CAS  PubMed  Google Scholar 

  105. Damyanovich AZ, Staples JR, Marshall KW. 1H NMR investigation of changes in the metabolic profile of synovial fluid in bilateral canine osteoarthritis with unilateral joint denervation. Osteoarthr Cartil. 1999;7(2):165–72. https://doi.org/10.1053/joca.1998.0205.

    Article  CAS  PubMed  Google Scholar 

  106. Ohnishi A, Osaki T, Matahira Y, Tsuka T, Imagawa T, Okamoto Y, et al. Correlation of plasma amino acid concentrations and chondroprotective effects of glucosamine and fish collagen peptide on the development of osteoarthritis. J Vet Med Sci. 2013;75(4):497–502.

    Article  CAS  PubMed  Google Scholar 

  107. Li X, Yang S, Qiu Y, Zhao T, Chen T, Su M, et al. Urinary metabolomics as a potentially novel diagnostic and stratification tool for knee osteoarthritis. Metabolomics. 2010;6(1):109–18.

    Article  Google Scholar 

  108. Zhang WD, Likhodii S, Zhang YH, Aref-Eshghi E, Harper PE, Randell E, et al. Classification of osteoarthritis phenotypes by metabolomics analysis. BMJ Open. 2014;4(11):e006286. https://doi.org/10.1136/bmjopen-2014-006286.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Reuter SE, Evans AM. Carnitine and acylcarnitines. Clin Pharmacokinet. 2012;51(9):553–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indira Prasadam.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Osteoarthritis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Showiheen, S.A.A., Sun, A.R., Wu, X. et al. Application of Metabolomics to Osteoarthritis: from Basic Science to the Clinical Approach. Curr Rheumatol Rep 21, 26 (2019). https://doi.org/10.1007/s11926-019-0827-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-019-0827-8

Keywords

Navigation