Skip to main content

Advertisement

Log in

Genetic Defects in Cytolysis in Macrophage Activation Syndrome

  • Pediatric Rheumatology (S Ozen, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Macrophage activation syndrome (MAS), typically presenting beyond the first year of life, is an often lethal cousin of familial hemophagocytic lymphohistiocytosis (fHLH). Defects in natural killer (NK) cell and CD8 T cell cytotoxicity result in a pro-inflammatory cytokine storm, cytopenia, coagulopathy, and multi-organ system dysfunction. MAS can occur in association with infections (herpes viruses), cancer (leukemia), immune deficient states (post-transplantation), and in autoimmune (systemic lupus erythematosus) and autoinflammatory conditions (systemic juvenile idiopathic arthritis). The distinction between fHLH, the result of homozygous defects in cytolytic pathway genes, and MAS is becoming blurred with the identification of single or multiple mutations in the same cytolytic pathway genes in patients with later onset MAS. Here, we review the literature and present novel cytolytic pathway gene mutations identified in children with MAS. We study the inhibitory effect of one these novel mutations on NK cell function to suggest a direct link between fHLH and MAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Filipovich AH. The expanding spectrum of hemophagocytic lymphohistiocytosis. Curr Opin Allergy Clin Immunol. 2011;11(6):512–6.

    Article  PubMed  CAS  Google Scholar 

  2. Janka GE. Familial and acquired hemophagocytic lymphohistiocytosis. Annu Rev Med. 2012;63:233–46. An up-to-date, thorough, and well written review on the topic of HLH.

    Article  PubMed  CAS  Google Scholar 

  3. Behrens EM, Beukelman T, Paessler M, Cron RQ. Occult macrophage activation syndrome in patients with systemic juvenile idiopathic arthritis. J Rheumatol. 2007;34(5):1133–8.

    PubMed  Google Scholar 

  4. Bleesing J, Prada A, Siegel DM, Villanueva J, Olson J, Ilowite NT, et al. The diagnostic significance of soluble CD163 and soluble interleukin-2 receptor alpha-chain in macrophage activation syndrome and untreated new-onset systemic juvenile idiopathic arthritis. Arthritis Rheum. 2007;56(3):965–71.

    Article  PubMed  CAS  Google Scholar 

  5. Singh S, Samant R, Joshi VR. Adult onset Still's disease: a study of 14 cases. Clin Rheumatol. 2008;27(1):35–9.

    Article  PubMed  CAS  Google Scholar 

  6. Kumakura S, Murakawa Y. Clinical characteristics and treatment outcomes of autoimmune-associated hemophagocytic syndrome in adults. Arthritis Rheumatol. 2014. A large number (n = 116) of secondary HLH patients with underlying autoimmune diseases was used to identify risk factors (male sex, dermatomyositis, and anemia) associated with mortality.

  7. Bennett TD, Fluchel M, Hersh AO, Hayward KN, Hersh AL, Brogan TV, et al. Macrophage activation syndrome in children with systemic lupus erythematosus and children with juvenile idiopathic arthritis. Arthritis Rheum. 2012;64(12):4135–42. Data from a large number of pediatric JIA (n = 102) and SLE (n = 19) patients with MAS suggested similar mortality rates in the two populations (6 and 11 %, respectively).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Pringe A, Trail L, Ruperto N, Buoncompagni A, Loy A, Breda L, et al. Macrophage activation syndrome in juvenile systemic lupus erythematosus: an under-recognized complication? Lupus. 2007;16(8):587–92.

    Article  PubMed  CAS  Google Scholar 

  9. Latino GA, Manlhiot C, Yeung RS, Chahal N, McCrindle BW. Macrophage activation syndrome in the acute phase of Kawasaki disease. J Pediatr Hematol Oncol. 2010;32(7):527–31.

    Article  PubMed  Google Scholar 

  10. Atteritano M, David A, Bagnato G, Beninati C, Frisina A, Iaria C, et al. Haemophagocytic syndrome in rheumatic patients. A systematic review. Eur Rev Med Pharmacol Sci. 2012;16(10):1414–24. Through a PUBMED literature search, 421 patients with HLH associated with rheumatic diseases were identified with most patients represented by sJIA and SLE.

    PubMed  CAS  Google Scholar 

  11. Henter JI, Horne A, Arico M, Egeler RM, Filipovich AH, Imashuku S, et al. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007;48(2):124–31.

    Article  PubMed  Google Scholar 

  12. Ravelli A, Magni-Manzoni S, Pistorio A, Besana C, Foti T, Ruperto N, et al. Preliminary diagnostic guidelines for macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. J Pediatr. 2005;146(5):598–604.

    Article  PubMed  Google Scholar 

  13. Davi S, Consolaro A, Guseinova D, Pistorio A, Ruperto N, Martini A, et al. An international consensus survey of diagnostic criteria for macrophage activation syndrome in systemic juvenile idiopathic arthritis. J Rheumatol. 2011;38(4):764–8. Expert opinion from 232 physicians worldwide was used to identify the most useful clinical and laboratory criteria (hyperferritinemia, falling platelet count, hemophagocytosis in bone marrow) to develop improved diagnostic criteria for MAS in the setting of sJIA.

    Article  PubMed  Google Scholar 

  14. Parodi A, Davi S, Pringe AB, Pistorio A, Ruperto N, Magni-Manzoni S, et al. Macrophage activation syndrome in juvenile systemic lupus erythematosus: a multinational multicenter study of thirty-eight patients. Arthritis Rheum. 2009;60(11):3388–99.

    Article  PubMed  CAS  Google Scholar 

  15. Fardet L, Galicier L, Lambotte O, Marzac C, Aumont C, Chahwan D, et al. Development and validation of a score for the diagnosis of reactive hemophagocytic syndrome (HScore). Arthritis Rheumatol. 2014. Reactive HLH patient and control data were used to develop a numerical score (HScore) based on the presence of clinical, biological, and cytological variables in order estimate the risk of developing HLH.

  16. Gupta S, Weitzman S. Primary and secondary hemophagocytic lymphohistiocytosis: clinical features, pathogenesis and therapy. Expert Rev Clin Immunol. 2010;6(1):137–54.

    Article  PubMed  Google Scholar 

  17. Park HS, Kim DY, Lee JH, Kim SD, Park YH, Lee JS, et al. Clinical features of adult patients with secondary hemophagocytic lymphohistiocytosis from causes other than lymphoma: an analysis of treatment outcome and prognostic factors. Ann Hematol. 2012;91(6):897–904.

    Article  PubMed  CAS  Google Scholar 

  18. Castillo L, Carcillo J. Secondary hemophagocytic lymphohistiocytosis and severe sepsis/ systemic inflammatory response syndrome/multiorgan dysfunction syndrome/macrophage activation syndrome share common intermediate phenotypes on a spectrum of inflammation. Pediatr Crit Care Med. 2009;10(3):387–92.

    Article  PubMed  Google Scholar 

  19. Typpo KV, Petersen NJ, Hallman DM, Markovitz BP, Mariscalco MM. Day 1 multiple organ dysfunction syndrome is associated with poor functional outcome and mortality in the pediatric intensive care unit. Pediatr Crit Care Med. 2009;10(5):562–70.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kanegaye JT, Wilder MS, Molkara D, Frazer JR, Pancheri J, Tremoulet AH, et al. Recognition of a Kawasaki disease shock syndrome. Pediatrics. 2009;123(5):e783–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Miettunen PM, Narendran A, Jayanthan A, Behrens EM, Cron RQ. Successful treatment of severe paediatric rheumatic disease-associated macrophage activation syndrome with interleukin-1 inhibition following conventional immunosuppressive therapy: case series with 12 patients. Rheumatology (Oxford). 2011;50(2):417–9. The use of an IL-1 blocker was used to successfully treat 12 children with rheumatic disease and refractory MAS.

    Article  CAS  Google Scholar 

  22. Allen CE, Yu X, Kozinetz CA, McClain KL. Highly elevated ferritin levels and the diagnosis of hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2008;50(6):1227–35.

    Article  PubMed  Google Scholar 

  23. Rosario C, Zandman-Goddard G, Meyron-Holtz EG, D'Cruz DP, Shoenfeld Y. The hyperferritinemic syndrome: macrophage activation syndrome, Still's disease, septic shock and catastrophic antiphospholipid syndrome. BMC Med. 2013;11:185.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Beutel G, Wiesner O, Eder M, Hafer C, Schneider AS, Kielstein JT, et al. Virus-associated hemophagocytic syndrome as a major contributor to death in patients with 2009 influenza A (H1N1) infection. Crit Care. 2011;15(2):R80.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Harms PW, Schmidt LA, Smith LB, Newton DW, Pletneva MA, Walters LL, et al. Autopsy findings in eight patients with fatal H1N1 influenza. Am J Clin Pathol. 2010;134(1):27–35.

    Article  PubMed  Google Scholar 

  26. Jessen B, Kogl T, Sepulveda FE, de Saint Basile G, Aichele P, Ehl S. Graded defects in cytotoxicity determine severity of hemophagocytic lymphohistiocytosis in humans and mice. Front Immunol. 2013;4:448. This study positively correlates the degree of HLH with the degree of defect in lymphocyte-mediated cytolysis in 6 different HLH prone mouse strains. Humans with biallelic defects in corresponding HLH genes revealed a similar severity gradient in HLH manifested by age of disease onset.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ravelli A, Grom AA, Behrens EM, Cron RQ. Macrophage activation syndrome as part of systemic juvenile idiopathic arthritis: diagnosis, genetics, pathophysiology and treatment. Genes Immun. 2012;13(4):289–98. This timely review article thoughtfully covers the diagnostic criteria, genetic predisposition, the cell type and cytokine pathophysiology, and effective cytokine blockade treatment of MAS in the setting of children with sJIA.

    Article  PubMed  CAS  Google Scholar 

  28. Verbsky JW, Grossman WJ. Hemophagocytic lymphohistiocytosis: diagnosis, pathophysiology, treatment, and future perspectives. Ann Med. 2006;38(1):20–31.

    Article  PubMed  CAS  Google Scholar 

  29. Behrens EM, Canna SW, Slade K, Rao S, Kreiger PA, Paessler M, et al. Repeated TLR9 stimulation results in macrophage activation syndrome-like disease in mice. J Clin Invest. 2011;121(6):2264–77. A novel mouse model of MAS on a genetically normal background and not requiring infection was developed and used to study the pathophysiology of MAS.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Risma K, Jordan MB. Hemophagocytic lymphohistiocytosis: updates and evolving concepts. Curr Opin Pediatr. 2012;24(1):9–15.

    Article  PubMed  CAS  Google Scholar 

  31. Usmani GN, Woda BA, Newburger PE. Advances in understanding the pathogenesis of HLH. Br J Haematol. 2013;161(5):609–22.

    Article  PubMed  CAS  Google Scholar 

  32. Jordan MB, Hildeman D, Kappler J, Marrack P. An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder. Blood. 2004;104(3):735–43.

    Article  PubMed  CAS  Google Scholar 

  33. Terrell CE, Jordan MB. Mixed hematopoietic or T-cell chimerism above a minimal threshold restores perforin-dependent immune regulation in perforin-deficient mice. Blood. 2013;122(15):2618–21. Using the perforin-deficient murine model of HLH, the authors show that only 10–20 % chimeric WT perforin-sufficient T cells are required to reduce HLH and prolong survival.

    Article  PubMed  CAS  Google Scholar 

  34. Behrens EM. Macrophage activation syndrome in rheumatic disease: what is the role of the antigen presenting cell? Autoimmun Rev. 2008;7(4):305–8.

    Article  PubMed  CAS  Google Scholar 

  35. Terrell CE, Jordan MB. Perforin deficiency impairs a critical immunoregulatory loop involving murine CD8(+) T cells and dendritic cells. Blood. 2013;121(26):5184–91. Perforin-dependent lysis of antigen presenting dendritic cells by cytotoxic CD8 T cells is critical for maintaining immune regulation in an animal model of HLH.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Sullivan KE, Delaat CA, Douglas SD, Filipovich AH. Defective natural killer cell function in patients with hemophagocytic lymphohistiocytosis and in first degree relatives. Pediatr Res. 1998;44(4):465–8.

    Article  PubMed  CAS  Google Scholar 

  37. Grom AA, Villanueva J, Lee S, Goldmuntz EA, Passo MH, Filipovich A. Natural killer cell dysfunction in patients with systemic-onset juvenile rheumatoid arthritis and macrophage activation syndrome. J Pediatr. 2003;142(3):292–6.

    Article  PubMed  CAS  Google Scholar 

  38. Zhang K, Biroschak J, Glass DN, Thompson SD, Finkel T, Passo MH, et al. Macrophage activation syndrome in patients with systemic juvenile idiopathic arthritis is associated with MUNC13-4 polymorphisms. Arthritis Rheum. 2008;58(9):2892–6.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hazen MM, Woodward AL, Hofmann I, Degar BA, Grom A, Filipovich AH, et al. Mutations of the hemophagocytic lymphohistiocytosis-associated gene UNC13D in a patient with systemic juvenile idiopathic arthritis. Arthritis Rheum. 2008;58(2):567–70.

    Article  PubMed  CAS  Google Scholar 

  40. Vastert SJ, van Wijk R, D'Urbano LE, de Vooght KM, de Jager W, Ravelli A, et al. Mutations in the perforin gene can be linked to macrophage activation syndrome in patients with systemic onset juvenile idiopathic arthritis. Rheumatology (Oxford). 2010;49(3):441–9.

    Article  CAS  Google Scholar 

  41. Zur Stadt U, Beutel K, Weber B, Kabisch H, Schneppenheim R, Janka G. A91V is a polymorphism in the perforin gene not causative of an FHLH phenotype. Blood. 2004;104(6):1909. author reply 1910.

    Article  PubMed  CAS  Google Scholar 

  42. Martinez-Pomar N, Lanio N, Romo N, Lopez-Botet M, Matamoros N. Functional impact of A91V mutation of the PRF1 perforin gene. Hum Immunol. 2013;74(1):14–7. The most recent report supporting decreased cytolytic activity of NK cells expressing the common perforin A91V mutation.

    Article  PubMed  CAS  Google Scholar 

  43. Trambas C, Gallo F, Pende D, Marcenaro S, Moretta L, De Fusco C, et al. A single amino acid change, A91V, leads to conformational changes that can impair processing to the active form of perforin. Blood. 2005;106(3):932–7.

    Article  PubMed  CAS  Google Scholar 

  44. Voskoboinik I, Sutton VR, Ciccone A, House CM, Chia J, Darcy PK, et al. Perforin activity and immune homeostasis: the common A91V polymorphism in perforin results in both presynaptic and postsynaptic defects in function. Blood. 2007;110(4):1184–90.

    Article  PubMed  CAS  Google Scholar 

  45. Voskoboinik I, Thia MC, Trapani JA. A functional analysis of the putative polymorphisms A91V and N252S and 22 missense perforin mutations associated with familial hemophagocytic lymphohistiocytosis. Blood. 2005;105(12):4700–6.

    Article  PubMed  CAS  Google Scholar 

  46. Zhang K, Jordan MB, Marsh RA, Johnson JA, Kissell D, Meller J, et al. Hypomorphic mutations in PRF1, MUNC13-4, and STXBP2 are associated with adult-onset familial hemophagocytic lymphohistiocytosis. Blood. 2011;118(22):5794–8. A significant percentage (14 %) of adult patients from a large cohort with HLH (n = 175) were found to have mutations in 3 of the fHLH genes leading to the credence that these genes contribute to late onset HLH.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Sumegi J, Barnes MG, Nestheide SV, Molleran-Lee S, Villanueva J, Zhang K, et al. Gene expression profiling of peripheral blood mononuclear cells from children with active hemophagocytic lymphohistiocytosis. Blood. 2011;117(15):e151–60. Gene expression profiling from 11 children with untreated HLH revealed decreased expression of NK cell function while showing increased expression of some of the pro-inflammatory cytokines (IL-1, IL-6).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Menasche G, Pastural E, Feldmann J, Certain S, Ersoy F, Dupuis S, et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat Genet. 2000;25(2):173–6.

    Article  PubMed  CAS  Google Scholar 

  49. Gong JH, Maki G, Klingemann HG. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia. 1994;8(4):652–8.

    PubMed  CAS  Google Scholar 

  50. Cote M, Menager MM, Burgess A, Mahlaoui N, Picard C, Schaffner C, et al. Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells. J Clin Invest. 2009;119(12):3765–73.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Cichocki F, Schlums H, Li H, Stache V, Holmes T, Lenvik TR, et al. Transcriptional regulation of Munc13-4 expression in cytotoxic lymphocytes is disrupted by an intronic mutation associated with a primary immunodeficiency. J Exp Med. 2014. Demonstration that a fHLH mutation that disrupts transcription factor engagement of a UNC13D transcriptional enhancer in intron 1 results in decreased NK cell cytolytic activity and shows that mutations outside the coding sequence of fHLH genes can alter lymphocyte killing function and contribute to HLH pathogenesis.

  52. Qian Y, Johnson JA, Connor JA, Valencia CA, Barasa N, Schubert J, et al. The 253-kb inversion and deep intronic mutations in UNC13D are present in North American patients with familial hemophagocytic lymphohistiocytosis 3. Pediatr Blood Cancer. 2014;61(6):1034–40. Two specific deep intronic mutations, including the one studied in Cichocki et al. above, and one large 253 kilobase inversion in the UNC13D gene were found to be present in total in about 17 % of a large (n = 1,709) cohort of North Americans with a suspected diagnosis of HLH.

    Article  PubMed  CAS  Google Scholar 

  53. Pagel J, Beutel K, Lehmberg K, Koch F, Maul-Pavicic A, Rohlfs AK, et al. Distinct mutations in STXBP2 are associated with variable clinical presentations in patients with familial hemophagocytic lymphohistiocytosis type 5 (FHL5). Blood. 2012;119(25):6016–24. Among a large cohort of STXPB2 mutant HLH patients, clinical differences in disease expression were correlated with specific types of STXBP2 mutations such that patients with exon 15 splice-site mutations presented later in life and had less severe NK cell defects.

    Article  PubMed  CAS  Google Scholar 

  54. Selliah N, Zhang M, White S, Zoltick P, Sawaya BE, Finkel TH, et al. FOXP3 inhibits HIV-1 infection of CD4 T-cells via inhibition of LTR transcriptional activity. Virology. 2008;381(2):161–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Klein E, Ben-Bassat H, Neumann H, Ralph P, Zeuthen J, Polliack A, et al. Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia. Int J Cancer. 1976;18(4):421–31.

    Article  PubMed  CAS  Google Scholar 

  56. Cao LF, Krymskaya L, Tran V, Mi S, Jensen MC, Blanchard S, et al. Development and application of a multiplexable flow cytometry-based assay to quantify cell-mediated cytolysis. Cytometry A. 2010;77(6):534–45.

    Article  PubMed  Google Scholar 

  57. Ohadi M, Lalloz MR, Sham P, Zhao J, Dearlove AM, Shiach C, et al. Localization of a gene for familial hemophagocytic lymphohistiocytosis at chromosome 9q21.3-22 by homozygosity mapping. Am J Hum Genet. 1999;64(1):165–71.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Stepp SE, Dufourcq-Lagelouse R, Le Deist F, Bhawan S, Certain S, Mathew PA, et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science. 1999;286(5446):1957–9.

    Article  PubMed  CAS  Google Scholar 

  59. Feldmann J, Callebaut I, Raposo G, Certain S, Bacq D, Dumont C, et al. Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell. 2003;115(4):461–73.

    Article  PubMed  CAS  Google Scholar 

  60. zur Stadt U, Schmidt S, Kasper B, Beutel K, Diler AS, Henter JI, et al. Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11. Hum Mol Genet. 2005;14(6):827–34.

    Article  PubMed  CAS  Google Scholar 

  61. Rubin CM, Burke BA, McKenna RW, McClain KL, White JG, Nesbit Jr ME, et al. The accelerated phase of Chediak-Higashi syndrome. An expression of the virus-associated hemophagocytic syndrome? Cancer. 1985;56(3):524–30.

    Article  PubMed  CAS  Google Scholar 

  62. Enders A, Zieger B, Schwarz K, Yoshimi A, Speckmann C, Knoepfle EM, et al. Lethal hemophagocytic lymphohistiocytosis in Hermansky-Pudlak syndrome type II. Blood. 2006;108(1):81–7.

    Article  PubMed  CAS  Google Scholar 

  63. Arico M, Imashuku S, Clementi R, Hibi S, Teramura T, Danesino C, et al. Hemophagocytic lymphohistiocytosis due to germline mutations in SH2D1A, the X-linked lymphoproliferative disease gene. Blood. 2001;97(4):1131–3.

    Article  PubMed  CAS  Google Scholar 

  64. Rigaud S, Fondaneche MC, Lambert N, Pasquier B, Mateo V, Soulas P, et al. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature. 2006;444(7115):110–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Randy Q. Cron has received < $5,000 each as consulting fees from Genentech, Novartis, and Swedish Orphan Biovitrum. Alexei A. Grom has received < $5,000 each as consulting fees from Novartis and Roche. Mingce Zhang, Edward M. Behrens, T. Prescott Atkinson, and Bita Shakoory declare that they have no conflict of interest. The work used to generate the data in Fig. 1 was supported by a grant from the Kaul Pediatric Research Institute to Randy Q. Cron.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animals. Institutional Review Board approval was obtained for human subjects studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy Q. Cron.

Additional information

This article is part of the Topical Collection on Pediatric Rheumatology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Behrens, E.M., Atkinson, T.P. et al. Genetic Defects in Cytolysis in Macrophage Activation Syndrome. Curr Rheumatol Rep 16, 439 (2014). https://doi.org/10.1007/s11926-014-0439-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-014-0439-2

Keywords

Navigation