Skip to main content

Advertisement

Log in

The Effect of Morphine on Glial Cells as a Potential Therapeutic Target for Pharmacological Development of Analgesic Drugs

  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Opioids have played a critical role in achieving pain relief in both modern and ancient medicine. Yet, their clinical use can be limited secondary to unwanted side effects such as tolerance, dependence, reward, and behavioral changes. Identification of glial-mediated mechanisms inducing opioid side effects include cytokine receptors, κ-opioid receptors, N-methyl-D-aspartate receptors, and the recently elucidated Toll-like receptors. Newer agents targeting these receptors such as AV411, MK-801, AV333, and SLC022, and older agents used outside the United States or for other disease conditions, such as minocycline, pentoxifylline, and UV50488H, all show varied but promising profiles for providing significant relief from opioid side effects, while simultaneously potentiating opioid analgesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Hutchinson MR, Bland ST, Johnson KW, et al.: Opioid-induced glial activation: mechanisms of activation and implications for opioid analgesia, dependence, and reward. ScientificWorldJournal 2007, 7:98–111. This article discusses TLRs and modifying agents and their relevance to the future of the management of pain. It also includes detailed information related to the research regarding naloxone in the management of opioid side effects.

  2. Coyle DE: Partial peripheral nerve injury leads to activation of astroglia and microglia which parallels the development of allodynic behavior. Glia 1998, 23:75–83.

    Article  CAS  PubMed  Google Scholar 

  3. McMahon SB (2002) Neuropathic pain mechanisms. In: Giamberardino MA (ed) Pain 2002—an updated review. Seattle: IASP Press, 155–164.

    Google Scholar 

  4. Nakajima K, Kohsaka S: Functional roles of microglia in the brain. Neurosci Res 1993, 17:187–203.

    Article  CAS  PubMed  Google Scholar 

  5. Milligan ED, Watkins LR: Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci 2009, 10:23–36.

    Article  CAS  PubMed  Google Scholar 

  6. Halassa MM, Fellin T, Haydon PG: The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 2007, 13:54–63.

    Article  CAS  PubMed  Google Scholar 

  7. Pocock JM, Kettenmann H: Neurotransmitter receptors on microglia. Trends Neurosci 2007, 30:527–535.

    Article  CAS  PubMed  Google Scholar 

  8. Cao H, Zhang YQ: Spinal glial activation contributes to pathological pain states. Neurosci Biobehav Rev 2008, 32:972–983.

    Article  PubMed  Google Scholar 

  9. Ji RR, Gereau RW 4th, Malcangio M, Strichartz GR: MAP kinase and pain. Brain Res Rev 2009, 60:135–148.

    Article  CAS  PubMed  Google Scholar 

  10. Watkins LR, Maier SF: The pain of being sick: implications of immune-to-brain communication for understanding pain. Annu Rev Psychol 2000, 51:29–57.

    Article  CAS  PubMed  Google Scholar 

  11. Minghetti L, Levi G: Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog Neurobiol 1998, 54:99–125.

    Article  CAS  PubMed  Google Scholar 

  12. Hutchinson MR, Coats BD, Lewis SS, et al.: Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia. Brain Behav Immun 2008, 22:1178–1189.

    Article  CAS  PubMed  Google Scholar 

  13. Malcangio M, Bowery NG, Flower RJ, Perretti M: Effect of interleukin-1 on the release of substance P from rat isolated spinal cord. Eur J Pharmacol 1996, 299:113–118.

    Article  CAS  PubMed  Google Scholar 

  14. •• Mika J: Modulation of microglia can attenuate neuropathic pain symptoms and enhance morphine effectiveness. Pharmacol Rep 2008, 60:297–307. This review discusses the roles of various cytokine-related cascades in addition to other TLR-related mechanisms in the generation of nonopioid receptor-mediated opioid effects and the agents that may be employed to modify them.

  15. Obreja O, Rathee PK, Lips KS, et al.: IL-1 potentiates heat-activated currents in rat sensory neurons: involvement of IL-1RI, tyrosine kinase, and protein kinase C. FASEB J 2002, 16:1497–1503.

    Article  CAS  PubMed  Google Scholar 

  16. Flatters SJ, Fox AJ, Dickenson AH: Spinal interleukin-6 (IL-6) inhibits nociceptive transmission following neuropathy. Brain Res 2003, 984:54–62.

    Article  CAS  PubMed  Google Scholar 

  17. Moore KW, O’Garra A, de Waal Malefyt R, et al.: Interleukin-10. Annu Rev Immunol 1993, 11:165–190

    Article  CAS  PubMed  Google Scholar 

  18. Avigen, Inc.: Available at www.avigen.com. Accessed November 2009.

  19. Sawada M, Suzumura A, Hosoya H, et al.: Interleukin-10 inhibits both production of cytokines and expression of cytokine receptors in microglia. J Neurochem 1999, 72:1466–1471.

    Article  CAS  PubMed  Google Scholar 

  20. Huber TS, Gaines GC, Welborn MB 3rd, et al.: Anticytokine therapies for acute inflammation and the systemic inflammatory response syndrome: IL-10 and ischemia/reperfusion injury as a new paradigm. Shock 2000, 13:425–434.

    CAS  PubMed  Google Scholar 

  21. Merrill JE, Benveniste EN: Cytokines in inflammatory brain lesions: helpful and harmful. Trends Neurosci 1996, 19:331–338.

    Article  CAS  PubMed  Google Scholar 

  22. Fontaine V, Mohand-Said S, Hanoteau N, et al.: Neurodegenerative and neuroprotective effects of tumor necrosis factor (TNF) in retinal ischemia: opposite roles of TNF receptor 1 and TNF receptor 2. J Neurosci 2002, 22:RC216.

    PubMed  Google Scholar 

  23. Tanga FY, Nutile-McMenemy N, Deleo JA: The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc Natl Acad Sci U S A 2005, 102: 5856–5861.

    Article  CAS  PubMed  Google Scholar 

  24. Kim D, Kim MA, Cho IH, et al.: A critical role of toll-like receptor 2 in nerve injury-induced spinal cord glial cell activation and pain hypersensitivity. J Biol Chem 2007, 282:14975–14983.

    Article  CAS  PubMed  Google Scholar 

  25. Muzio M, Mantovani A: Toll-like receptors (TLRs) signalling and expression pattern. J Endotoxin Res 2001, 7:297–300.

    CAS  PubMed  Google Scholar 

  26. •• Guo LH, Schluesener HJ: The innate immunity of the central nervous system in chronic pain: the role of Toll-like receptors. Cell Mol Life Sci 2007, 64:1128–1136. This article offers a detailed discussion on TLRs and their role in the development of various types of pain.

  27. Takeda K, Akira S: TLR signaling pathways. Semin Immunol 2004, 16:3–9.

    Article  CAS  PubMed  Google Scholar 

  28. •• Watkins LR, Hutchinson MR, Rice KC, Maier SF: The “toll” of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia. Trends Pharmacol Sci 2009, 30:581–591. This is a very recent review of TLR receptors and the current foci of interest in the management of dependence, reward, and other opioid-related side effects.

  29. Kakimura J, Kitamura Y, Takata K, et al.: Microglial activation and amyloid-beta clearance induced by exogenous heat-shock proteins. FASEB J 2002, 16:601–603.

    CAS  PubMed  Google Scholar 

  30. Tsuda M, Shigemoto-Mogami Y, Koizumi S, et al.: P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 2003, 424:778–783.

    Article  CAS  PubMed  Google Scholar 

  31. Horvath RJ, DeLeo JA: Morphine enhances microglial migration through modulation of P2X4 receptor signaling. J Neurosci 2009, 29:998–1005.

    Article  CAS  PubMed  Google Scholar 

  32. McMahon SB, Cafferty WB, Marchand F: Immune and glial cell factors as pain mediators and modulators. Exp Neurol 2005, 192:444–462.

    Article  CAS  PubMed  Google Scholar 

  33. •• Hutchinson MR, Zhang Y, Shridhar M, et al.: Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav Immun 2010, 24:83–95. This paper summarizes recent information regarding the highly central role of TLR-4 receptors with implications to the current developments in the opioid-related tolerance and dependence modifying agents.

  34. Juni A, Klein G, Pintar JE, Kest B: Nociception increases during opioid infusion in opioid receptor triple knock-out mice. Neuroscience 2007, 147:439–444.

    Article  CAS  PubMed  Google Scholar 

  35. Shu H, Hayashida M, Huang W, et al.: The comparison of effects of processed Aconiti tuber, U50488H and MK-801 on the antinociceptive tolerance to morphine. J Ethnopharmacol 2008, 117:158–165.

    Article  PubMed  Google Scholar 

  36. •• Ueda H, Ueda M: Mechanisms underlying morphine analgesic tolerance and dependence. Front Biosci 2009, 14:5260–5272. This is a highly detailed review of the protein pathways responsible for the development of opioid tolerance and dependence. This review includes discussions on protein kinase receptor phosphorylations, NMDA receptors, neurotrophins, and various other neuropeptides.

  37. Xu M, Bruchas MR, Ippolito DL, et al.: Sciatic nerve ligation-induced proliferation of spinal cord astrocytes is mediated by kappa opioid activation of p38 mitogen-activated protein kinase. J Neurosci 2007, 27:2570–2581.

    Article  CAS  PubMed  Google Scholar 

  38. • Ledeboer A, Hutchinson MR, Watkins LR, Johnson KW: Ibudilast (AV-411). A new class therapeutic candidate for neuropathic pain and opioid withdrawal syndromes. Expert Opin Investig Drugs 2007, 16:935–950. This review details the effectiveness of ibudilast in the management of opioid tolerance and reward.

  39. Kishi Y, Ohta S, Kasuya N, et al.: Ibudilast: a non-selective PDE inhibitor with multiple actions on blood cells and the vascular wall. Cardiovasc Drug Rev 2001, 19:215–225.

    Article  CAS  PubMed  Google Scholar 

  40. Fujimoto T, Sakoda S, Fujimura H, Yanagihara T: Ibudilast, a phosphodiesterase inhibitor, ameliorates experimental autoimmune encephalomyelitis in Dark August rats. J Neuroimmunol 1999, 95:35–42.

    Article  CAS  PubMed  Google Scholar 

  41. Feng J, Misu T, Fujihara K, et al.: Ibudilast, a nonselective phosphodiesterase inhibitor, regulates Th1/Th2 balance and NKT cell subset in multiple sclerosis. Mult Scler 2004, 10:494–498.

    Article  CAS  PubMed  Google Scholar 

  42. Harris GC, Aston-Jones G: Involvement of D2 dopamine receptors in the nucleus accumbens in the opiate withdrawal syndrome. Nature 1994, 371:155–157.

    Article  CAS  PubMed  Google Scholar 

  43. • Bland ST, Hutchinson MR, Maier SF, et al.: The glial activation inhibitor AV411 reduces morphine-induced nucleus accumbens dopamine release. Brain Behav Immun 2009, 23:492–497. This review discusses the mechanism of action of AV411 and its relationship to TLRs.

  44. Kest B, Mogil JS, Shamgar BE, et al.: The NMDA receptor antagonist MK-801 protects against the development of morphine tolerance after intrathecal administration. Proc West Pharmacol Soc 1993, 36:307–310.

    CAS  PubMed  Google Scholar 

  45. Guo RX, Zhang M, Liu W, et al.: NMDA receptors are involved in upstream of the spinal JNK activation in morphine antinociceptive tolerance. Neurosci Lett 2009, 467:95–99.

    Article  CAS  PubMed  Google Scholar 

  46. Morgan MM, Bobeck EN, Ingram SL: Glutamate modulation of antinociception, but not tolerance, produced by morphine microinjection into the periaqueductal gray of the rat. Brain Res 2009, 1295:59–66.

    Article  CAS  PubMed  Google Scholar 

  47. Schmidt AP, Tort AB, Silveira PP, et al.: The NMDA antagonist MK-801 induces hyperalgesia and increases CSF excitatory amino acids in rats: reversal by guanosine. Pharmacol Biochem Behav 2009, 91:549–553.

    Article  CAS  PubMed  Google Scholar 

  48. Sweitzer SM, Pahl JL, DeLeo JA: Propentofylline attenuates vincristine-induced peripheral neuropathy in the rat. Neurosci Lett 2006, 400:258–261.

    Article  CAS  PubMed  Google Scholar 

  49. Gwak YS, Crown ED, Unabia GC, Hulsebosch CE: Propentofylline attenuates allodynia, glial activation and modulates GABAergic tone after spinal cord injury in the rat. Pain 2008, 138:410–422.

    Article  CAS  PubMed  Google Scholar 

  50. Narita M, Miyatake M, Narita M, et al.: Direct evidence of astrocytic modulation in the development of rewarding effects induced by drugs of abuse. Neuropsychopharmacology 2006, 31:2476–2488.

    Article  CAS  PubMed  Google Scholar 

  51. Mika J, Wawrzczak-Bargiela A, Osikowicz M, et al.: Attenuation of morphine tolerance by minocycline and pentoxifylline in naive and neuropathic mice. Brain Behav Immun 2009, 23:75–84.

    Article  CAS  PubMed  Google Scholar 

  52. Kim HS, Suh YH: Minocycline and neurodegenerative diseases. Behav Brain Res 2009, 196:168–179.

    Article  CAS  PubMed  Google Scholar 

  53. Li WW, Setzu A, Zhao C, Franklin RJ: Minocycline-mediated inhibition of microglia activation impairs oligodendrocyte progenitor cell responses and remyelination in a non-immune model of demyelination. J Neuroimmunol 2005, 158:58–66.

    Article  CAS  PubMed  Google Scholar 

  54. Ledeboer A, Sloane EM, Milligan ED, et al.: Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain 2005, 115:71–83.

    Article  CAS  PubMed  Google Scholar 

  55. Zanjani TM, Sabetkasaei M, Mosaffa N, et al.: Suppression of interleukin-6 by minocycline in a rat model of neuropathic pain. Eur J Pharmacol 2006, 538:66–72.

    Article  CAS  PubMed  Google Scholar 

  56. Piao ZG, Cho IH, Park CK, et al.: Activation of glia and microglial p38 MAPK in medullary dorsal horn contributes to tactile hypersensitivity following trigeminal sensory nerve injury. Pain 2006, 121:219–231.

    Article  CAS  PubMed  Google Scholar 

  57. Cui Y, Liao XX, Liu W, et al.: A novel role of minocycline: attenuating morphine antinociceptive tolerance by inhibition of p38 MAPK in the activated spinal microglia. Brain Behav Immun 2008, 22:114–123.

    Article  CAS  PubMed  Google Scholar 

  58. Wei T, Sabsovich I, Guo TZ, et al.: Pentoxifylline attenuates nociceptive sensitization and cytokine expression in a tibia fracture rat model of complex regional pain syndrome. Eur J Pain 2009, 13:253–262.

    Article  CAS  PubMed  Google Scholar 

  59. Dorazil-Dudzik M, Mika J, Schafer MK, et al.: The effects of local pentoxifylline and propentofylline treatment on formalin-induced pain and tumor necrosis factor-alpha messenger RNA levels in the inflamed tissue of the rat paw. Anesth Analg 2004, 98:1566–1573.

    Article  CAS  PubMed  Google Scholar 

  60. Liu J, Feng X, Yu M, et al.: Pentoxifylline attenuates the development of hyperalgesia in a rat model of neuropathic pain. Neurosci Lett 2007, 412:268–272.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Christo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hameed, H., Hameed, M. & Christo, P.J. The Effect of Morphine on Glial Cells as a Potential Therapeutic Target for Pharmacological Development of Analgesic Drugs. Curr Pain Headache Rep 14, 96–104 (2010). https://doi.org/10.1007/s11916-010-0093-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11916-010-0093-y

Keywords

Navigation