Skip to main content
Log in

Fracture Risk in Vegetarians and Vegans: the Role of Diet and Metabolic Factors

  • Nutrition, Exercise and Lifestyle (S Shapses and R Daly, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

There is strong evidence that poor dietary intake of certain micro- and macro-nutrients can negatively affect bone health. It is unclear if diet is the primary culprit for poor bone health in the vegan population.

Recent Findings

Plant-based diets are gaining public interest since they may improve metabolic health. Studies that examine vegetarians and vegans together show a lower bone mineral density (BMD), but not always increased fracture risk compared to omnivores. However, vegans consistently have higher risk of fracture at multiple bone sites, especially at the hip.

Summary

There is higher fracture risk in vegans which may be due to calcium and vitamin D intake, as well as amount of dietary protein and quality. Other nutrients (B vitamins, Se, Zn, Fe, iodine) or physiological factors (lower body mass index, microbiome, or endocrine profile) may also play a role but have not been examined and require further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Milfont TL, Satherley N, Osborne D, Wilson MS, Sibley CG. To meat, or not to meat: a longitudinal investigation of transitioning to and from plant-based diets. Appetite. 2021;166:105584.

    Article  PubMed  Google Scholar 

  2. Agrawal S, Millett CJ, Dhillon PK, Subramanian SV, Ebrahim S. Type of vegetarian diet, obesity and diabetes in adult Indian population. Nutr J. 2014;13:89.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Le LT, Sabate J. Beyond meatless, the health effects of vegan diets: findings from the Adventist cohorts. Nutrients. 2014;6(6):2131–47.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Qian F, Liu G, Hu FB, Bhupathiraju SN, Sun Q. Association between plant-based dietary patterns and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA Intern Med. 2019;179(10):1335–44.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kim H, Caulfield LE, Garcia-Larsen V, Steffen LM, Coresh J, Rebholz CM. Plant-based diets are associated with a lower risk of incident cardiovascular disease, cardiovascular disease mortality, and all-cause mortality in a general population of middle-aged adults. J Am Heart Assoc. 2019;8(16):e012865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Orlich MJ, Singh PN, Sabaté J, Jaceldo-Siegl K, Fan J, Knutsen S, Beeson WL, Fraser GE. Vegetarian dietary patterns and mortality in Adventist Health Study 2. JAMA Intern Med. 2013;173(13):1230–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Appleby PN, Davey GK, Key TJ. Hypertension and blood pressure among meat eaters, fish eaters, vegetarians and vegans in EPIC-Oxford. Public Health Nutr. 2002;5(5):645–54.

    Article  PubMed  Google Scholar 

  8. Schüpbach R, Wegmüller R, Berguerand C, Bui M, Herter-Aeberli I. Low CA & vitD in vegan...Micronutrient status and intake in omnivores, vegetarians and vegans in Switzerland. Eur J Nutr. 2017;56(1):283–93.

    Article  PubMed  Google Scholar 

  9. Ho-Pham LT, Vu BQ, Lai TQ, Nguyen ND, Nguyen TV. Low VitD in vegans only...Vegetarianism, bone loss, fracture and vitamin D: a longitudinal study in Asian vegans and non-vegans. Eur J Clin Nutr. 2012;66(1):75–82.

    Article  CAS  PubMed  Google Scholar 

  10. Outila TA, Kärkkäinen MUM, Seppänen RH, Lamberg-Allardt CJE. Dietary intake of vitamin D in premenopausal, healthy vegans was insufficient to maintain concentrations of serum 25-hydroxyvitamin D and intact parathyroid hormone within normal ranges during the winter in Finland. J Am Diet Assoc. 2000;100(4):434-441.

  11. Chiu JF, Lan SJ, Yang CY, Wang PW, Yao WJ, Su IH, Hsieh CC. Low CA in vegetarian..Long-term vegetarian diet and bone mineral density in postmenopausal Taiwanese women. Calcif Tissue Int. 1997;60(3):245–9.

    Article  CAS  PubMed  Google Scholar 

  12. U.S. Department of Health and Human Services, U.S. Department of Agriculture. 2020 – 2025 Dietary Guidelines for Americans. 9th ed; 2020.

  13. Ahmed LA, Schirmer H, Bjørnerem A, Emaus N, Jørgensen L, Størmer J, Joakimsen RM. The gender- and age-specific 10-year and lifetime absolute fracture risk in Tromsø, Norway. Eur J Epidemiol. 2009;24(8):441–8.

    Article  PubMed  Google Scholar 

  14. Iguacel I, Miguel-Berges ML, Gomez-Bruton A, Moreno LA, Julian C. Veganism, vegetarianism, bone mineral density, and fracture risk: a systematic review and meta-analysis. Nutr Rev. 2019;77(1):1-18. This systematic review and meta-analysis is a comprehensive review of studies until the end of 2017 reporting lower BMD in vegetarians and vegans but only an increased fracture risk in vegans.

  15. Appleby P, Roddam A, Allen N, Key T. Comparative fracture risk in vegetarians and nonvegetarians in EPIC-Oxford. Eur J Clin Nutr. 2007;61(12):1400–6.

    Article  CAS  PubMed  Google Scholar 

  16. Lousuebsakul-Matthews V, Thorpe DL, Knutsen R, Beeson WL, Fraser GE, Knutsen SF. Legumes and meat analogues consumption are associated with hip fracture risk independently of meat intake among Caucasian men and women: the Adventist Health Study-2. Public Health Nutr. 2014;17(10):2333-43. This study showed that although vegans have increased risk for fracture compared to those who eat meat, hip fracture risk is attenuated 40-64% with increased protein intake from either plant or animal sources.

  17. Thorpe DL, Beeson WL, Knutsen R, Fraser GE, Knutsen SF. Dietary patterns and hip fracture in the Adventist Health Study 2: combined vitamin D and calcium supplementation mitigate increased hip fracture risk among vegans. Am J Clin Nutr. 2021;114(2):488–95.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Thorpe DL, Knutsen SF, Beeson WL, Rajaram S, Fraser GE. Effects of meat consumption and vegetarian diet on risk of wrist fracture over 25 years in a cohort of peri- and postmenopausal women. Public Health Nutr. 2008;11(6):564–72.

    Article  PubMed  Google Scholar 

  19. Tong TYN, Appleby PN, Armstrong MEG, Fensom GK, Knuppel A, Papier K, et al. Vegetarian and vegan diets and risks of total and site-specific fractures: results from the prospective EPIC-Oxford study. BMC Med. 2020;18(1):353. This large-scale study indicated a higher fracture risk at multiple bone sites (hip, leg, spine) in vegans even when controlling for covariates like lower BMI and nutrients known to affect bone health (i.e. calcium and protein).

  20. Ho-Pham LT, Vu BQ, Lai TQ, Nguyen ND, Nguyen TV. Vegetarianism, bone loss, fracture and vitamin D: a longitudinal study in Asian vegans and non-vegans. Eur J Clin Nutr. 2012;66(1):75–82.

    Article  CAS  PubMed  Google Scholar 

  21. Dash N, Kushwaha A. Stress fractures-a prospective study amongst recruits. Med J Armed Forces India. 2012;68(2):118–22.

    Article  PubMed  Google Scholar 

  22. Webster J, Greenwood DC, Cade JE. Risk of hip fracture in meat-eaters, pescatarians, and vegetarians: results from the UK Women’s Cohort Study. BMC Med. 2022;20(1):275.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Key TJ, Davey GK, Appleby PN. Health benefits of a vegetarian diet. Proc Nutr Soc. 1999;58(2):271–5.

    Article  CAS  PubMed  Google Scholar 

  24. Spencer EA, Appleby PN, Davey GK, Key TJ. Diet and body mass index in 38000 EPIC-Oxford meat-eaters, fish-eaters, vegetarians and vegans. Int J Obes Relat Metab Disord. 2003;27(6):728–34.

    Article  CAS  PubMed  Google Scholar 

  25. Toohey ML, Harris MA, DeWitt W, Foster G, Schmidt WD, Melby CL. Cardiovascular disease risk factors are lower in African-American vegans compared to lacto-ovo-vegetarians. J Am Coll Nutr. 1998;17(5):425–34.

    Article  CAS  PubMed  Google Scholar 

  26. Bakaloudi DR, Halloran A, Rippin HL, Oikonomidou AC, Dardavesis TI, Williams J, Wickramasinghe K, Breda J, Chourdakis M. Intake and adequacy of the vegan diet. A systematic review of the evidence. Clin Nutr. 2021;40(5):3503–21.

    Article  CAS  PubMed  Google Scholar 

  27. Menzel J, Abraham K, Stangl GI, Ueland PM, Obeid R, Schulze MB, et al. Vegan diet and bone health-results from the cross-sectional RBVD study. Nutrients. 2021;13(2).

  28. Balogun S, Winzenberg T, Wills K, Scott D, Jones G, Aitken D, Callisaya ML. Prospective associations of low muscle mass and function with 10-year falls risk, incident fracture and mortality in community-dwelling older adults. J Nutr Health Aging. 2017;21(7):843–8.

    Article  CAS  PubMed  Google Scholar 

  29. Veronese N, Reginster JY. The effects of calorie restriction, intermittent fasting and vegetarian diets on bone health. Aging Clin Exp Res. 2019;31(6):753–8.

    Article  PubMed  Google Scholar 

  30. Galchenko A, Gapparova K, Sidorova E. The influence of vegetarian and vegan diets on the state of bone mineral density in humans. Crit Rev Food Sci Nutr. 2021:1–17.

  31. Ho-Pham LT, Nguyen ND, Nguyen TV. Effect of vegetarian diets on bone mineral density: a Bayesian meta-analysis. Am J Clin Nutr. 2009;90(4):943–50.

    Article  CAS  PubMed  Google Scholar 

  32. Li T, Li Y, Wu S. Comparison of human bone mineral densities in subjects on plant-based and omnivorous diets: a systematic review and meta-analysis. Arch Osteoporos. 2021;16(1):95. This is an important systematic review and meta-analysis using 17 cross-sectional studies showing that vegans or vegetarians compared to omnivores have lower bone mineral density (BMD) at the lumbar spine, femoral neck, and whole-body.

  33. Wakolbinger-Habel R, Reinweber M, König J, Pokan R, König D, Pietschmann P, Muschitz C. Self-reported resistance training is associated with better HR-pQCT derived bone microarchitecture in vegan people. J Clin Endocrinol Metab. 2022.

  34. Hansen TH, Madsen MTB, Jørgensen NR, Cohen AS, Hansen T, Vestergaard H, Pedersen O, Allin KH. Bone turnover, calcium homeostasis, and vitamin D status in Danish vegans. Eur J Clin Nutr. 2018;72(7):1046–54.

    Article  CAS  PubMed  Google Scholar 

  35. Herrmann W, Obeid R, Schorr H, Hübner U, Geisel J, Sand-Hill M, Ali N, Herrmann M. Enhanced bone metabolism in vegetarians--the role of vitamin B12 deficiency. Clin Chem Lab Med. 2009;47(11):1381–7.

    Article  CAS  PubMed  Google Scholar 

  36. Kohlenberg-Mueller K, Raschka L. Calcium balance in young adults on a vegan and lactovegetarian diet. J Bone Miner Metab. 2003;21(1):28–33.

    Article  CAS  PubMed  Google Scholar 

  37. Desmond MA, Sobiecki JG, Jaworski M, Pludowski P, Antoniewicz J, Shirley MK, et al. Growth, body composition, and cardiovascular and nutritional risk of 5- to 10-y-old children consuming vegetarian, vegan, or omnivore diets. Am J Clin Nutr. 2021;113(6):1565–77.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Appleby PN, Key TJ. The long-term health of vegetarians and vegans. Proc Nutr Soc. 2016;75(3):287–93.

    Article  PubMed  Google Scholar 

  39. Shapses SA. Do we need to be concerned about bone mineral density in vegetarians and vegans? J Nutr. 2020;150(5):983–4.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Karavasiloglou N, Selinger E, Gojda J, Rohrmann S, Kühn T. Differences in bone mineral density between adult vegetarians and nonvegetarians become marginal when accounting for differences in anthropometric factors. J Nutr. 2020;150(5):1266-71. This study highlights the importance of accounting for anthropometric factors, such as BMI, when investigating differences in bone mineral density between plant-based and omnivore diets.

  41. Lynch HM, Wharton CM, Johnston CS. Cardiorespiratory fitness and peak torque differences between Vegetarian and Omnivore Endurance Athletes: a cross-sectional study. Nutrients. 2016;8(11).

  42. Armstrong ME, Spencer EA, Cairns BJ, Banks E, Pirie K, Green J, et al. Body mass index and physical activity in relation to the incidence of hip fracture in postmenopausal women. J Bone Miner Res. 2011;26(6):1330–8.

    Article  PubMed  Google Scholar 

  43. Tong TY, Key TJ, Sobiecki JG, Bradbury KE. Anthropometric and physiologic characteristics in white and British Indian vegetarians and nonvegetarians in the UK Biobank. Am J Clin Nutr. 2018;107(6):909–20.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ho-Pham LT, Nguyen PL, Le TT, Doan TA, Tran NT, Le TA, et al. Veganism, bone mineral density, and body composition: a study in Buddhist nuns. Osteoporos Int. 2009;20(12):2087–93.

    Article  CAS  PubMed  Google Scholar 

  45. Clarys P, Deliens T, Huybrechts I, Deriemaeker P, Vanaelst B, De Keyzer W, et al. Comparison of nutritional quality of the vegan, vegetarian, semi-vegetarian, pesco-vegetarian and omnivorous diet. Nutrients. 2014;6(3):1318–32.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ma Y, Pagoto SL, Griffith JA, Merriam PA, Ockene IS, Hafner AR, OlendzkI BC. A dietary quality comparison of popular weight-loss plans. J Am Diet Assoc. 2007;107(10):1786–91.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Turner-McGrievy GM, Barnard ND, Cohen J, Jenkins DJ, Gloede L, Green AA. Changes in nutrient intake and dietary quality among participants with type 2 diabetes following a low-fat vegan diet or a conventional diabetes diet for 22 weeks. J Am Diet Assoc. 2008;108(10):1636–45.

    Article  PubMed  Google Scholar 

  48. Movassagh EZ, Vatanparast H. Current evidence on the association of dietary patterns and bone Health: a scoping review. Adv Nutr. 2017;8(1):1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. de Jonge EA, Kiefte-de Jong JC, de Groot LC, Voortman T, Schoufour JD, Zillikens MC, et al. Development of a food group-based diet score and its association with bone mineral density in the elderly: the Rotterdam Study. Nutrients. 2015;7(8):6974–90.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kahleova H, Levin S, Barnard N. Vegetarian dietary patterns and cardiovascular disease. Prog Cardiovasc Dis. 2018;61(1):54–61.

    Article  PubMed  Google Scholar 

  51. Nicoll R, McLaren HJ. The acid-ash hypothesis revisited: a reassessment of the impact of dietary acidity on bone. J Bone Miner Metab. 2014;32(5):469–75.

    Article  CAS  PubMed  Google Scholar 

  52. Qiu R, Cao WT, Tian HY, He J, Chen GD, Chen YM. Greater intake of fruit and vegetables is associated with greater bone mineral density and lower osteoporosis risk in middle-aged and elderly adults. PLoS ONE. 2017;12(1):e0168906.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tucker KL, Hannan MT, Chen H, Cupples LA, Wilson PW, Kiel DP. Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am J Clin Nutr. 1999;69(4):727–36.

    Article  CAS  PubMed  Google Scholar 

  54. Wallace TC, Bailey RL, Blumberg JB, Burton-Freeman B, Chen CO, Crowe-White KM, Drewnowski A, Hooshmand S, Johnson E, Lewis R, Murray R, Shapses SA, Wang DD. Fruits, vegetables, and health: a comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Crit Rev Food Sci Nutr. 2020;60(13):2174–211.

    Article  CAS  PubMed  Google Scholar 

  55. Hannan MT, Tucker KL, Dawson-Hughes B, Cupples LA, Felson DT, Kiel DP. Effect of dietary protein on bone loss in elderly men and women: the Framingham Osteoporosis Study. J Bone Miner Res. 2000;15(12):2504–12.

    Article  CAS  PubMed  Google Scholar 

  56. Bonjour JP. The dietary protein, IGF-I, skeletal health axis. Horm Mol Biol Clin Investig. 2016;28(1):39–53.

    CAS  PubMed  Google Scholar 

  57. Schurch MA, Rizzoli R, Slosman D, Vadas L, Vergnaud P, Bonjour JP. Protein supplements increase serum insulin-like growth factor-I levels and attenuate proximal femur bone loss in patients with recent hip fracture. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 1998;128(10):801–9.

    Article  CAS  PubMed  Google Scholar 

  58. Kerstetter JE, O'Brien KO, Insogna KL. Dietary protein, calcium metabolism, and skeletal homeostasis revisited. Am J Clin Nutr. 2003;78(3 Suppl):584S–92S.

    Article  CAS  PubMed  Google Scholar 

  59. Kerstetter JE, Kenny AM, Insogna KL. Dietary protein and skeletal health: a review of recent human research. Curr Opin Lipidol. 2011;22(1):16–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Popova A, Mihaylova D. Antinutrients in plant-based foods: a review. Open Biotechnol. J. 2019;13:68–76.

    Article  CAS  Google Scholar 

  61. Gorissen SHM, Crombag JJR, Senden JMG, Waterval WAH, Bierau J, Verdijk LB, van Loon LJC. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids. 2018;50(12):1685–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sarwar Gilani G, Wu Xiao C, Cockell KA. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Br J Nutr. 2012;108(Suppl 2):S315–32.

    Article  CAS  PubMed  Google Scholar 

  63. Reynaud Y, Buffière C, Cohade B, Vauris M, Liebermann K, Hafnaoui N, Lopez M, Souchon I, Dupont D, Rémond D. True ileal amino acid digestibility and digestible indispensable amino acid scores (DIAASs) of plant-based protein foods. Food Chem. 2021;338:128020.

    Article  CAS  PubMed  Google Scholar 

  64. Liu J, Ho SC, Su YX, Chen WQ, Zhang CX, Chen YM. Effect of long-term intervention of soy isoflavones on bone mineral density in women: a meta-analysis of randomized controlled trials. Bone. 2009;44(5):948–53.

    Article  CAS  PubMed  Google Scholar 

  65. Vatanparast H, Chilibeck PD. Does the effect of soy phytoestrogens on bone in postmenopausal women depend on the equol-producing phenotype? Nutr Rev. 2007;65(6 Pt 1):294–9.

    Article  PubMed  Google Scholar 

  66. Hughes GJ, Ryan DJ, Mukherjea R, Schasteen CS. Protein digestibility-corrected amino acid scores (PDCAAS) for soy protein isolates and concentrate: criteria for evaluation. J Agric Food Chem. 2011;59(23):12707–12.

    Article  CAS  PubMed  Google Scholar 

  67. Langsetmo L, Barr SI, Berger C, Kreiger N, Rahme E, Adachi JD, et al. Associations of protein intake and protein source with bone mineral density and fracture risk: a population-based cohort study. J Nutr Health Aging. 2015;19(8):861–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Darling AL, Manders RJF, Sahni S, Zhu K, Hewitt CE, Prince RL, Millward DJ, Lanham-New SA. Dietary protein and bone health across the life-course: an updated systematic review and meta-analysis over 40 years. Osteoporos Int. 2019;30(4):741–61.

    Article  CAS  PubMed  Google Scholar 

  69. Shapses SA. Calcium and phosphorus. Biochemical, physiological & molecular aspects of human nutrition. St Louis, MO: Elsevier; 2019. p. 756–83.

    Google Scholar 

  70. Cifuentes M, Morano AB, Chowdhury HA, Shapses SA. Energy restriction reduces fractional calcium absorption in mature obese and lean rats. J Nutr. 2002;132(9):2660–6.

    Article  CAS  PubMed  Google Scholar 

  71. Cifuentes M, Riedt CS, Brolin RE, Field MP, Sherrell RM, Shapses SA. Weight loss and calcium intake influence calcium absorption in overweight postmenopausal women. Am J Clin Nutr. 2004;80(1):123–30.

    Article  CAS  PubMed  Google Scholar 

  72. Amalraj A, Pius A. Relative contribution of oxalic acid, phytate and tannic acid on the bioavailability of calcium from various calcium salts - an in vitro study. Int Food Res J. 2017;24(3):1278–85.

    CAS  Google Scholar 

  73. Cormick G, Belizan JM. Calcium intake and health. Nutrients. 2019;11(7).

  74. IOM (Institute of Medicine). Dietary reference intakes for calcium and vitamin D. Washington, DC: The National Academies Press; 2011.

  75. U.S. Department of Agriculture FC 2019; Pages https://fdc.nal.usda.gov/fdc-app.html#/food-details/170567/nutrients on June 20, 2022.

  76. Bandali E, Wang Y, Lan Y, Rogers MA, Shapses SA. The influence of dietary fat and intestinal pH on calcium bioaccessibility: an in vitro study. Food Funct. 2018;9(3):1809–15.

    Article  CAS  PubMed  Google Scholar 

  77. Hill KM, Jonnalagadda SS, Albertson AM, Joshi NA, Weaver CM. Top food sources contributing to vitamin D intake and the association of ready-to-eat cereal and breakfast consumption habits to vitamin D intake in Canadians and United States Americans. J Food Sci. 2012;77(8):H170–5.

    Article  CAS  PubMed  Google Scholar 

  78. Jungert A, Spinneker A, Nagel A, Neuhauser-Berthold M. Dietary intake and main food sources of vitamin D as a function of age, sex, vitamin D status, body composition, and income in an elderly German cohort. Food Nutr Res. 2014;58:23632.

    Article  Google Scholar 

  79. Moore CE, Radcliffe JD, Liu Y. Vitamin D intakes of adults differ by income, gender and race/ethnicity in the U.S.A., 2007 to 2010. Public Health Nutr. 2014;17(4):756–63.

    Article  PubMed  Google Scholar 

  80. Maurya VK, Aggarwal M. Factors influencing the absorption of vitamin D in GIT: an overview. J Food Sci Technol. 2017;54(12):3753–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Biancuzzo RM, Clarke N, Reitz RE, Travison TG, Holick MF. Serum concentrations of 1,25-dihydroxyvitamin D2 and 1,25-dihydroxyvitamin D3 in response to vitamin D2 and vitamin D3 supplementation. J Clin Endocrinol Metab. 2013;98(3):973–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Niramitmahapanya S, Harris SS, Dawson-Hughes B. Type of dietary fat is associated with the 25-hydroxyvitamin D3 increment in response to vitamin D supplementation. J Clin Endocrinol Metab. 2011;96(10):3170–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Alles B, Baudry J, Mejean C, Touvier M, Peneau S, Hercberg S, et al. Comparison of sociodemographic and nutritional characteristics between self-reported vegetarians, vegans, and meat-eaters from the NutriNet-Sante Study. Nutrients. 2017;9(9).

  84. Elorinne AL, Alfthan G, Erlund I, Kivimaki H, Paju A, Salminen I, et al. Food and nutrient intake and nutritional status of Finnish vegans and non-vegetarians. PLoS ONE. 2016;11(2):e0148235.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kristensen NB, Madsen ML, Hansen TH, Allin KH, Hoppe C, Fagt S, Lausten MS, Gøbel RJ, Vestergaard H, Hansen T, Pedersen O. Intake of macro- and micronutrients in Danish vegans. Nutr J. 2015;14:115.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Gkastaris K, Goulis DG, Potoupnis M, Anastasilakis AD, Kapetanos G. Obesity, osteoporosis and bone metabolism. J Musculoskelet Neuronal Interact. 2020;20(3):372–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu C, Feng X, Li Q, Wang Y, Li Q, Hua M. Adiponectin, TNF-alpha and inflammatory cytokines and risk of type 2 diabetes: a systematic review and meta-analysis. Cytokine. 2016;86:100–9.

    Article  CAS  PubMed  Google Scholar 

  88. Soysal P, Arik F, Smith L, Jackson SE, Isik AT. Inflammation, frailty and cardiovascular disease. Advances in experimental medicine and biology. 2020;1216:55-64.

  89. Mundy GR. Osteoporosis and inflammation. Nutr Rev. 2007;65(12 Pt 2):S147–51.

    Article  PubMed  Google Scholar 

  90. Braun T, Schett G. Pathways for bone loss in inflammatory disease. Curr Osteoporos Rep. 2012;10(2):101–8.

    Article  PubMed  Google Scholar 

  91. Fang Y, Zhu J, Fan J, Sun L, Cai S, Fan C, Zhong Y, Li Y. Dietary Inflammatory Index in relation to bone mineral density, osteoporosis risk and fracture risk: a systematic review and meta-analysis. Osteoporos Int. 2021;32(4):633–43.

    Article  CAS  PubMed  Google Scholar 

  92. Menzel J, Jabakhanji A, Biemann R, Mai K, Abraham K, Weikert C. Systematic review and meta-analysis of the associations of vegan and vegetarian diets with inflammatory biomarkers. Sci Rep. 2020;10(1):21736. This systematic review and meta-analysis examines how plant-based diets affect inflammatory biomarkers. Vegans compared to omnivores have lower C-reactive protein (CRP) but not other inflammatory markers.

  93. Barbaresko J, Koch M, Schulze MB, Nothlings U. Dietary pattern analysis and biomarkers of low-grade inflammation: a systematic literature review. Nutr Rev. 2013;71(8):511–27.

    Article  PubMed  Google Scholar 

  94. Craddock JC, Neale EP, Peoples GE, Probst YC. Vegetarian-based dietary patterns and their relation with inflammatory and immune biomarkers: a systematic review and meta-analysis. Adv Nutr. 2019;10(3):433–51.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Eichelmann F, Schwingshackl L, Fedirko V, Aleksandrova K. Effect of plant-based diets on obesity-related inflammatory profiles: a systematic review and meta-analysis of intervention trials. Obes Rev. 2016;17(11):1067–79.

    Article  CAS  PubMed  Google Scholar 

  96. Lederer AK, Maul-Pavicic A, Hannibal L, Hettich M, Steinborn C, Grundemann C, et al. Vegan diet reduces neutrophils, monocytes and platelets related to branched-chain amino acids - a randomized, controlled trial. Clin Nutr. 2020;39(11):3241–50.

    Article  CAS  PubMed  Google Scholar 

  97. Dinu M, Abbate R, Gensini GF, Casini A, Sofi F. Vegetarian, vegan diets and multiple health outcomes: a systematic review with meta-analysis of observational studies. Crit Rev Food Sci Nutr. 2017;57(17):3640–9.

    Article  PubMed  Google Scholar 

  98. Lee Y, Park K. Adherence to a vegetarian diet and diabetes risk: a systematic review and meta-analysis of observational studies. Nutrients. 2017;9(6).

  99. Chen YC, Greenbaum J, Shen H, Deng HW. Association between gut microbiota and bone health: potential mechanisms and prospective. J Clin Endocrinol Metab. 2017;102(10):3635–46.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Karl JP, Fu X, Wang X, Zhao Y, Shen J, Zhang C, Wolfe BE, Saltzman E, Zhao L, Booth SL. Fecal menaquinone profiles of overweight adults are associated with gut microbiota composition during a gut microbiota–targeted dietary intervention. Am J Clin Nutr. 2015;102(1):84–93.

    Article  CAS  PubMed  Google Scholar 

  101. Schwarzer M, Makki K, Storelli G, Machuca-Gayet I, Srutkova D, Hermanova P, Martino ME, Balmand S, Hudcovic T, Heddi A, Rieusset J, Kozakova H, Vidal H, Leulier F. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science. 2016;351(6275):854–7.

    Article  CAS  PubMed  Google Scholar 

  102. Sjögren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, Bäckhed F, Ohlsson C. The gut microbiota regulates bone mass in mice. J Bone Miner Res. 2012;27(6):1357–67.

    Article  PubMed  Google Scholar 

  103. Guss JD, Horsfield MW, Fontenele FF, Sandoval TN, Luna M, Apoorva F, Lima SF, Bicalho RC, Singh A, Ley RE, van der Meulen MCH, Goldring SR, Hernandez CJ. Alterations to the gut microbiome impair bone strength and tissue material properties. J Bone Miner Res. 2017;32(6):1343–53.

    Article  CAS  PubMed  Google Scholar 

  104. Wang Z, Chen K, Wu C, Chen J, Pan H, Liu Y, Wu P, Yuan J, Huang F, Lang J, du J, Xu J, Jin K, Chen L. An emerging role of Prevotella histicola on estrogen deficiency-induced bone loss through the gut microbiota-bone axis in postmenopausal women and in ovariectomized mice. Am J Clin Nutr. 2021;114(4):1304–13.

    Article  PubMed  Google Scholar 

  105. Yuan S, Shen J. Bacteroides vulgatus diminishes colonic microbiota dysbiosis ameliorating lumbar bone loss in ovariectomized mice. Bone. 2021;142:115710.

    Article  CAS  PubMed  Google Scholar 

  106. Narva M, Nevala R, Poussa T, Korpela R. The effect ofLactobacillus helveticusfermented milk on acute changes in calcium metabolism inpostmenopausal women. Eur J Nutr. 2004;43(2):61–8.

    Article  CAS  PubMed  Google Scholar 

  107. Das M, Cronin O, Keohane DM, Cormac EM, Nugent H, Nugent M, et al. Gut microbiota alterations associated with reduced bone mineral density in older adults. Rheumatology (Oxford). 2019;58(12):2295–304.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Li C, Huang Q, Yang R, Dai Y, Zeng Y, Tao L, Li X, Zeng J, Wang Q. Gut microbiota composition and bone mineral loss—epidemiologic evidence from individuals in Wuhan, China. Osteoporos Int. 2019;30(5):1003–13.

    Article  CAS  PubMed  Google Scholar 

  109. Ozaki D, Kubota R, Maeno T, Abdelhakim M, Hitosugi N. Association between gut microbiota, bone metabolism, and fracture risk in postmenopausal Japanese women. Osteoporos Int. 2021;32(1):145–56.

    Article  CAS  PubMed  Google Scholar 

  110. Rettedal EA, Ilesanmi-Oyelere BL, Roy NC, Coad J, Kruger MC. The gut microbiome is altered in postmenopausal women with osteoporosis and osteopenia. JBMR Plus. 2021;5(3):e10452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65(11):1812–21.

    Article  PubMed  Google Scholar 

  112. Franco-de-Moraes AC, de Almeida-Pititto B, da Rocha FG, Gomes EP, da Costa PA, Ferreira SRG. Worse inflammatory profile in omnivores than in vegetarians associates with the gut microbiota composition. Diabetol Metab Syndr. 2017;9:62.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Kabeerdoss J, Devi RS, Mary RR, Ramakrishna BS. Faecal microbiota composition in vegetarians: comparison with omnivores in a cohort of young women in southern India. Br J Nutr. 2012;108(6):953–7.

    Article  CAS  PubMed  Google Scholar 

  114. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.

    Article  CAS  PubMed  Google Scholar 

  115. Djekic D, Shi L, Brolin H, Carlsson F, Särnqvist C, Savolainen O, Cao Y, Bäckhed F, Tremaroli V, Landberg R, Frøbert O. Effects of a vegetarian diet on cardiometabolic risk factors, gut microbiota, and plasma metabolome in subjects with ischemic heart disease: a randomized, crossover study. J Am Heart Assoc. 2020;9(18):e016518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Trefflich I, Jabakhanji A, Menzel J, Blaut M, Michalsen A, Lampen A, et al. Is a vegan or a vegetarian diet associated with the microbiota composition in the gut? Results of a new cross-sectional study and systematic review. Crit Rev Food Sci Nutr. 2020;60(17):2990-3004. This important review discusses alterations of the gut microbiota in vegans and vegetarians compared to omnivores. It also highlights the complexity of examining the association between diet and the gut microbiota.

  117. Zimmer J, Lange B, Frick JS, Sauer H, Zimmermann K, Schwiertz A, Rusch K, Klosterhalfen S, Enck P. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur J Clin Nutr. 2012;66(1):53–60.

    Article  CAS  PubMed  Google Scholar 

  118. Wu GD, Compher C, Chen EZ, Smith SA, Shah RD, Bittinger K, Chehoud C, Albenberg LG, Nessel L, Gilroy E, Star J, Weljie AM, Flint HJ, Metz DC, Bennett MJ, Li H, Bushman FD, Lewis JD. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut. 2016;65(1):63–72.

    Article  CAS  PubMed  Google Scholar 

  119. van Faassen A, Bol J, van Dokkum W, Pikaar NA, Ockhuizen T, Hermus RJ. Bile acids, neutral steroids, and bacteria in feces as affected by a mixed, a lacto-ovovegetarian, and a vegan diet. Am J Clin Nutr. 1987;46(6):962–7.

    Article  PubMed  Google Scholar 

  120. Jakeman SA, Henry CN, Martin BR, McCabe GP, McCabe LD, Jackson GS, et al. Soluble corn fiber increases bone calcium retention in postmenopausal women in a dose-dependent manner: a randomized crossover trial. Am J Clin Nutr. 2016;104(3):837–43.

    Article  CAS  PubMed  Google Scholar 

  121. Cao S, Cladis DP, Weaver CM. Use of calcium isotopic tracers to determine factors that perturb calcium metabolism. J Agric Food Chem. 2020;68(46):12886–92.

    Article  CAS  PubMed  Google Scholar 

  122. Melina V, Craig W, Levin S. Position of the academy of nutrition and dietetics: vegetarian diets. J Acad Nutr Diet. 2016;116(12):1970–80.

    Article  PubMed  Google Scholar 

  123. Huang CJ, Fan YC, Liu JF, Tsai PS. Characteristics and nutrient intake of Taiwanese elderly vegetarians: evidence from a national survey. Br J Nutr. 2011;106(3):451–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue A. Shapses.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nutrition, Exercise and Lifestyle

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogilvie, A.R., McGuire, B.D., Meng, L. et al. Fracture Risk in Vegetarians and Vegans: the Role of Diet and Metabolic Factors. Curr Osteoporos Rep 20, 442–452 (2022). https://doi.org/10.1007/s11914-022-00754-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-022-00754-7

Keywords

Navigation