Skip to main content
Log in

Solute Transport in the Bone Lacunar-Canalicular System (LCS)

  • Osteocytes (T Bellido and J Klein Nulend, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Solute transport in the lacunar-canalicular system (LCS) plays important roles in osteocyte metabolism and cell-cell signaling. This review will summarize recent studies that establish pericellular matrix (PCM), discovered inside the LCS, as a crucial regulator of solute transport in bone.

Recent Findings

Utilizing confocal imaging and mathematical modeling, recent studies successfully quantified molecular diffusion and convection in the LCS as well as the size-dependent sieving effects of the PCM, leading to the quantification of the effective PCM fiber spacing (10 to 17 nm) in murine adult bones. Perlecan/HSPG2, a large linear proteoglycan, was identified to be an essential PCM component.

Summary

The PCM-filled LCS is bone’s chromatographic column, where fluid/solute transport to and from the osteocytes is regulated. The chemical composition, deposition rate, and turnover rate of the osteocyte PCM should be further defined to better understand osteocyte physiology and bone metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229–38. https://doi.org/10.1002/jbmr.320.

    Article  CAS  PubMed  Google Scholar 

  2. • Schaffler MB, et al. Osteocytes: master orchestrators of bone. Calcif Tissue Int. 2014;94(1):5–24. Provided a comprehensive review on osteocyte cell-cell signaling in repairing tissue damage and remodeling.

    Article  CAS  PubMed  Google Scholar 

  3. Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest. 1998;102(2):274–82. https://doi.org/10.1172/JCI2799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Busse B, Djonic D, Milovanovic P, Hahn M, Püschel K, Ritchie RO, et al. Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell. 2010;9(6):1065–75. https://doi.org/10.1111/j.1474-9726.2010.00633.x.

    Article  CAS  PubMed  Google Scholar 

  5. Qiu S, Rao DS, Palnitkar S, Parfitt AM. Reduced iliac cancellous osteocyte density in patients with osteoporotic vertebral fracture. J Bone Miner Res. 2003;18(9):1657–63. https://doi.org/10.1359/jbmr.2003.18.9.1657.

    Article  PubMed  Google Scholar 

  6. Piekarski K, Munro M. Transport mechanism operating between blood supply and osteocytes in long bones. Nature. 1977;269(5623):80–2. https://doi.org/10.1038/269080a0.

    Article  CAS  PubMed  Google Scholar 

  7. Fritton SP, Weinbaum S. Fluid and solute transport in bone: flow-induced mechanotransduction. Annu Rev Fluid Mech. 2009;41(1):347–74. https://doi.org/10.1146/annurev.fluid.010908.165136.

    Article  PubMed  PubMed Central  Google Scholar 

  8. McClung MR, Grauer A, Boonen S, Bolognese MA, Brown JP, Diez-Perez A, et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014;370(5):412–20. https://doi.org/10.1056/NEJMoa1305224.

    Article  CAS  PubMed  Google Scholar 

  9. Dallas SL, Prideaux M, Bonewald LF. The osteocyte: an endocrine cell ... and more. Endocr Rev. 2013;34(5):658–90. https://doi.org/10.1210/er.2012-1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Franz-Odendaal TA, Hall BK, Witten PE. Buried alive: how osteoblasts become osteocytes. Dev Dyn. 2006;235(1):176–90. https://doi.org/10.1002/dvdy.20603.

    Article  CAS  PubMed  Google Scholar 

  11. Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 2003;22(23):6267–76. https://doi.org/10.1093/emboj/cdg599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao S, Kato Y, Zhang Y, Harris S, Ahuja SS, Bonewald LF. MLO-Y4 osteocyte-like cells support osteoclast formation and activation. J Bone Miner Res. 2002;17(11):2068–79. https://doi.org/10.1359/jbmr.2002.17.11.2068.

    Article  CAS  PubMed  Google Scholar 

  13. Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O'Brien CA. Matrix-embedded cells control osteoclast formation. Nat Med. 2011;17(10):1235–41. https://doi.org/10.1038/nm.2448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. You L, Temiyasathit S, Lee P, Kim CH, Tummala P, Yao W, et al. Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading. Bone. 2008;42(1):172–9. https://doi.org/10.1016/j.bone.2007.09.047.

    Article  CAS  PubMed  Google Scholar 

  15. Duan P, Bonewald LF. The role of the wnt/beta-catenin signaling pathway in formation and maintenance of bone and teeth. Int J Biochem Cell Biol. 2016;77(Pt A):23–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Riquelme MA, Burra S, Kar R, Lampe PD, Jiang JX. Mitogen-activated protein kinase (MAPK) activated by prostaglandin E2 phosphorylates connexin 43 and closes osteocytic hemichannels in response to continuous flow shear stress. J Biol Chem. 2015;290(47):28321–8. https://doi.org/10.1074/jbc.M115.683417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de Castro LF, Maycas M, Bravo B, Esbrit P, Gortazar A. VEGF receptor 2 (VEGFR2) activation is essential for osteocyte survival induced by mechanotransduction. J Cell Physiol. 2015;230(2):278–85. https://doi.org/10.1002/jcp.24734.

    Article  PubMed  Google Scholar 

  18. Kitase Y, Barragan L, Qing H, Kondoh S, Jiang JX, Johnson ML, et al. Mechanical induction of PGE2 in osteocytes blocks glucocorticoid-induced apoptosis through both the beta-catenin and PKA pathways. J Bone Miner Res. 2010;25(12):2657–68. https://doi.org/10.1002/jbmr.168.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zeng Y, Cowin SC, Weinbaum S. A fiber matrix model for fluid flow and streaming potentials in the canaliculi of an osteon. Ann Biomed Eng. 1994;22(3):280–92. https://doi.org/10.1007/BF02368235.

    Article  CAS  PubMed  Google Scholar 

  20. Burger EH, Klein-Nulend J. Mechanotransduction in bone—role of the lacuno-canalicular network. FASEB J. 1999;13(Suppl):S101–12.

    Article  CAS  PubMed  Google Scholar 

  21. Cardoso L, Fritton SP, Gailani G, Benalla M, Cowin SC. Advances in assessment of bone porosity, permeability and interstitial fluid flow. J Biomech. 2013;46(2):253–65. https://doi.org/10.1016/j.jbiomech.2012.10.025.

    Article  PubMed  Google Scholar 

  22. Cowin SC. Bone poroelasticity. J Biomech. 1999;32(3):217–38. https://doi.org/10.1016/S0021-9290(98)00161-4.

    Article  CAS  PubMed  Google Scholar 

  23. Dyke JP, Aaron RK. Noninvasive methods of measuring bone blood perfusion. Ann N Y Acad Sci. 2010;1192(1):95–102. https://doi.org/10.1111/j.1749-6632.2009.05376.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. • Granke M, Does MD, Nyman JS. The role of water compartments in the material properties of cortical bone. Calcif Tissue Int. 2015;97(3):292–307. Provided a review on bound water and free water distribution in bone tissue and their roles in bone material properties.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aarden EM, Burger EH, Nijweide PJ. Function of osteocytes in bone. J Cell Biochem. 1994;55(3):287–99. https://doi.org/10.1002/jcb.240550304.

    Article  CAS  PubMed  Google Scholar 

  26. Pienkowski D, Pollack SR. The origin of stress-generated potentials in fluid-saturated bone. J Orthop Res. 1983;1(1):30–41. https://doi.org/10.1002/jor.1100010105.

    Article  CAS  PubMed  Google Scholar 

  27. Weinbaum S, Cowin SC, Zeng Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech. 1994;27(3):339–60. https://doi.org/10.1016/0021-9290(94)90010-8.

    Article  CAS  PubMed  Google Scholar 

  28. Cowin SC, Weinbaum S, Zeng Y. A case for bone canaliculi as the anatomical site of strain generated potentials. J Biomech. 1995;28(11):1281–97. https://doi.org/10.1016/0021-9290(95)00058-P.

    Article  CAS  PubMed  Google Scholar 

  29. You L, Cowin SC, Schaffler MB, Weinbaum S. A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. J Biomech. 2001;34(11):1375–86. https://doi.org/10.1016/S0021-9290(01)00107-5.

    Article  CAS  PubMed  Google Scholar 

  30. Wang Y, McNamara LM, Schaffler MB, Weinbaum S. A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proc Natl Acad Sci U S A. 2007;104(40):15941–6. https://doi.org/10.1073/pnas.0707246104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Han Y, Cowin SC, Schaffler MB, Weinbaum S. Mechanotransduction and strain amplification in osteocyte cell processes. Proc Natl Acad Sci U S A. 2004;101(47):16689–94. https://doi.org/10.1073/pnas.0407429101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Webster DJ, Schneider P, Dallas SL, Müller R. Studying osteocytes within their environment. Bone. 2013;54(2):285–95. https://doi.org/10.1016/j.bone.2013.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li W, You L, Schaffler MB, Wang L. The dependency of solute diffusion on molecular weight and shape in intact bone. Bone. 2009;45(5):1017–23. https://doi.org/10.1016/j.bone.2009.07.076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Price C, Zhou X, Li W, Wang L. Real-time measurement of solute transport within the lacunar-canalicular system of mechanically loaded bone: direct evidence for load-induced fluid flow. J Bone Miner Res. 2011;26(2):277–85. https://doi.org/10.1002/jbmr.211.

    Article  CAS  PubMed  Google Scholar 

  35. •• Wang B, et al. Perlecan-containing pericellular matrix regulates solute transport and mechanosensing within the osteocyte lacunar-canalicular system. J Bone Miner Res. 2014;29(4):878–91. Quantified diffusion and convection in perlecan-deficient bone, measured reflection coefficient of PCM of normal and decreased perlecan expression, and determined the effective fiber spacing for the PCM. Linked cellular hydraulic forces (shear and drag) with in vivo bone formation and provided evidence that perlecan serves as a flow sensor in the LCS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang L, Wang Y, Han Y, Henderson SC, Majeska RJ, Weinbaum S, et al. In situ measurement of solute transport in the bone lacunar-canalicular system. Proc Natl Acad Sci U S A. 2005;102(33):11911–6. https://doi.org/10.1073/pnas.0505193102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang L, Ciani C, Doty SB, Fritton SP. Delineating bone’s interstitial fluid pathway in vivo. Bone. 2004;34(3):499–509. https://doi.org/10.1016/j.bone.2003.11.022.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tami AE, Schaffler MB, Knothe Tate ML. Probing the tissue to subcellular level structure underlying bone’s molecular sieving function. Biorheology. 2003;40(6):577–90.

    CAS  PubMed  Google Scholar 

  39. • Ciani C, et al. Ovariectomy enhances mechanical load-induced solute transport around osteocytes in rat cancellous bone. Bone. 2014;59:229–34. Provided evidence that estrogen deficiency altered solute perfusion in cortical and trabecular bone.

    Article  CAS  PubMed  Google Scholar 

  40. Lang SB, Stipanich N, Soremi EA. Diffusion of glucose in stressed and unstressed canine femur in vitro. Ann N Y Acad Sci. 1974;238(1 Electrically):139–48. https://doi.org/10.1111/j.1749-6632.1974.tb26784.x.

    Article  CAS  PubMed  Google Scholar 

  41. Fernandez-Seara MA, Wehrli SL, Wehrli FW. Diffusion of exchangeable water in cortical bone studied by nuclear magnetic resonance. Biophys J. 2002;82(1 Pt 1):522–9. https://doi.org/10.1016/S0006-3495(02)75417-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li W, Gardinier JD, Price C, Wang L. Does blood pressure enhance solute transport in the bone lacunar-canalicular system? Bone. 2010;47(2):353–9. https://doi.org/10.1016/j.bone.2010.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. •• Wang B, et al. Quantifying load-induced solute transport and solute-matrix interaction within the osteocyte lacunar-canalicular system. J Bone Miner Res. 2013;28(5):1075–86. Developed the FRAP-based velocimetry to quantify reflection coefficient of the PCM and the molecular sieving model to derive the effective fiber spacing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Knothe Tate ML, Knothe U. An ex vivo model to study transport processes and fluid flow in loaded bone. J Biomech. 2000;33(2):247–54. https://doi.org/10.1016/S0021-9290(99)00143-8.

    Article  CAS  PubMed  Google Scholar 

  45. Zhou X, Novotny JE, Wang L. Modeling fluorescence recovery after photobleaching in loaded bone: potential applications in measuring fluid and solute transport in the osteocytic lacunar-canalicular system. Ann Biomed Eng. 2008;36(12):1961–77. https://doi.org/10.1007/s10439-008-9566-0.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hillsley MV, Frangos JA. Bone tissue engineering: the role of interstitial fluid flow. Biotechnol Bioeng. 1994;43(7):573–81. https://doi.org/10.1002/bit.260430706.

    Article  CAS  PubMed  Google Scholar 

  47. You LD, Weinbaum S, Cowin SC, Schaffler MB. Ultrastructure of the osteocyte process and its pericellular matrix. Anat Rec A Discov Mol Cell Evol Biol. 2004;278(2):505–13. https://doi.org/10.1002/ar.a.20050.

    Article  PubMed  Google Scholar 

  48. Thompson WR, Modla S, Grindel BJ, Czymmek KJ, Kirn-Safran CB, Wang L, et al. Perlecan/Hspg2 deficiency alters the pericellular space of the lacunocanalicular system surrounding osteocytic processes in cortical bone. J Bone Miner Res. 2011;26(3):618–29. https://doi.org/10.1002/jbmr.236.

    Article  CAS  PubMed  Google Scholar 

  49. Iozzo RV, Cohen IR, Grässel S, Murdoch AD. The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. Biochem J. 1994;302(Pt 3):625–39. https://doi.org/10.1042/bj3020625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. • Farach-Carson MC, et al. Border patrol: insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue borders. Matrix Biol. 2014;34:64–79. Provided a comprehensive review on perlecan’s structural and biological functions along various tissue interfaces including bone LCS.

    Article  CAS  PubMed  Google Scholar 

  51. •• Wijeratne SS, et al. Single molecule force measurements of perlecan/HSPG2: a key component of the osteocyte pericellular matrix. Matrix Biol. 2016;50:27–38. AFM imaging of the dimensions of isolated human perlecan and tested the mechanical strength of the perlecan core proteins by AFM pulling experiments.

    Article  CAS  PubMed  Google Scholar 

  52. Rodgers KD, Sasaki T, Aszodi A, Jacenko O. Reduced perlecan in mice results in chondrodysplasia resembling Schwartz-Jampel syndrome. Hum Mol Genet. 2007;16(5):515–28. https://doi.org/10.1093/hmg/ddl484.

    Article  CAS  PubMed  Google Scholar 

  53. • Lai X et al. The dependences of osteocyte network on bone compartment, age, and disease. Bone Res, 2015. 3. Investigated the variations of the LCS in murine bone and discovered the relatively constant of the canalicular number density per unit lacunar surface.

  54. Lynch ME, Main RP, Xu Q, Schmicker TL, Schaffler MB, Wright TM, et al. Tibial compression is anabolic in the adult mouse skeleton despite reduced responsiveness with aging. Bone. 2011;49(3):439–46. https://doi.org/10.1016/j.bone.2011.05.017.

    Article  PubMed  PubMed Central  Google Scholar 

  55. • Fan L, et al. A multiscale 3D finite element analysis of fluid/solute transport in mechanically loaded bone. Bone Res. 2016;4:16032. Modeling fluid and solute transport at three levels (whole bone, lacunar, and canalicular levels).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Martinez, J.R., S. Pei, and L. Wang. Profiling the composition of osteocyte pericellular matrix (PCM) in vivo and in vitro. in Annual meeting of American Association for Bone and Mineral Research. 2017. Denver, CO.

  57. Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42(6):551–5. https://doi.org/10.1016/j.injury.2011.03.031.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Topping J, Black AJ, Farquharson RG, Fraser WD. Osteoporosis in pregnancy: more than postural backache. Prof Care Mother Child. 1998;8(6):147–50.

    CAS  PubMed  Google Scholar 

  59. •• Jahn K, et al. Osteocytes acidify their microenvironment in response to PTHrP in vitro and in lactating mice in vivo. J Bone Miner Res. 2017;32(8):1761–72. New evidence that osteocytes are capable of remodeling the surrounding matrix.

    Article  PubMed  Google Scholar 

  60. •• Nango N, et al. Osteocyte-directed bone demineralization along canaliculi. Bone. 2016;84:279–88. New evidence that osteocytes are capable of remodeling the surrounding matrix.

    Article  CAS  PubMed  Google Scholar 

  61. Qing H, Ardeshirpour L, Divieti Pajevic P, Dusevich V, Jähn K, Kato S, et al. Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. J Bone Miner Res. 2012;27(5):1018–29. https://doi.org/10.1002/jbmr.1567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dallas SL, Bonewald LF. Dynamics of the transition from osteoblast to osteocyte. Ann N Y Acad Sci. 2010;1192(1):437–43. https://doi.org/10.1111/j.1749-6632.2009.05246.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. •• Kamioka H, et al. Microscale fluid flow analysis in a human osteocyte canaliculus using a realistic high-resolution image-based three-dimensional model. Integr Biol (Camb). 2012;4(10):1198–206. Irregular canalicular wall and rough surface were observed and osteocyte cell processes appeared not in direct contact with canalicular wall under 2.2 nm resolution.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyun Wang.

Ethics declarations

Conflict of Interest

Liyun Wang received grant support from the National Institutes of Health (R01AR054385) and declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Osteocytes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L. Solute Transport in the Bone Lacunar-Canalicular System (LCS). Curr Osteoporos Rep 16, 32–41 (2018). https://doi.org/10.1007/s11914-018-0414-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-018-0414-3

Keywords

Navigation