Skip to main content

Advertisement

Log in

Effects of Aging on Fracture Healing

  • Orthopedic Management of Fractures (S Bukata and L Gerstenfeld, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review summarizes research on the physiological changes that occur with aging and the resulting effects on fracture healing.

Recent Findings

Aging affects the inflammatory response during fracture healing through senescence of the immune response and increased systemic pro-inflammatory status. Important cells of the inflammatory response, macrophages, T cells, mesenchymal stem cells, have demonstrated intrinsic age-related changes that could impact fracture healing. Additionally, vascularization and angiogenesis are impaired in fracture healing of the elderly. Finally, osteochondral cells and their progenitors demonstrate decreased activity and quantity within the callus.

Summary

Age-related changes affect many of the biologic processes involved in fracture healing. However, the contributions of such changes do not fully explain the poorer healing outcomes and increased morbidity reported in elderly patients. Future research should address this gap in understanding in order to provide improved and more directed treatment options for the elderly population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Iorio R, Robb WJ, Healy WL, Berry DJ, Hozack WJ, Kyle RF, et al. Orthopaedic surgeon workforce and volume assessment for total hip and knee replacement in the United States: preparing for an epidemic. J Bone Joint Surg Am. 2008;90:1598–605.

    Article  PubMed  Google Scholar 

  2. UScensus. U.S. Department of Commerce, Economics and Statistics Administration, U.S. Census Bureau, Washington. 2015. http://www.census.gov/content/dam/Census/library/2015 Accessed 29 July 2015.

  3. Rose S, Maffulli N. Hip fractures: an epidemiological review. Bull Hosp Jt Dis. 1999;58:197–201.

    CAS  PubMed  Google Scholar 

  4. Green E, Lubahn JD, Evans J. Risk factors, treatment, and outcomes associated with nonunion of the midshaft humerus fracture. J Surg Orthop Adv. 2005;14:64–72.

    PubMed  Google Scholar 

  5. Cauley JA, Thompson DE, Ensrud KC, Scott J, Black D. Risk of mortality following clinical fractures. Osteoporos Int. 2000;11:556–61.

    Article  CAS  PubMed  Google Scholar 

  6. Nieminen S, Nurmi M, Satokari K. Healing of femoral neck fractures; influence of fracture reduction and age. Ann Chir Gynaecol. 1981;70:26–31.

    CAS  PubMed  Google Scholar 

  7. Geerts WH, Heit JA, Clagett GP, Pineo GF, Colwell CW, Anderson FA, et al. Prevention of venous thromboembolism. Chest. 2001;119:132S–75S.

    Article  CAS  PubMed  Google Scholar 

  8. Little DG, Ramachandran M, Schindeler A. The anabolic and catabolic responses in bone repair. J Bone Joint Surg Br. 2007;89:425–33.

    Article  CAS  PubMed  Google Scholar 

  9. Hankenson KD, Zmmerman G, Marcucio R. Biological perspectives of delayed fracture healing. Injury. 2014;45:S8–S15.

  10. Phillips AM. Overview of the fracture healing cascade. Injury. 2005;36:55–7.

    Article  Google Scholar 

  11. Kurdy NM, Weiss JB, Bate A. Endothelial stimulating angiogenic factor in early fracture healing. Injury. 1996;27:143–5.

    Article  CAS  PubMed  Google Scholar 

  12. Hu DP, Ferro F, Yang F, Taylor AJ, Chang W, Miclau T, et al. Cartilage to bone transformation during fracture healing is coordinated by the invading vasculature and induction of the core pluripotency genes. Development. 2017;15:221–34.

    Article  Google Scholar 

  13. Bahney CS, Hu DP, Taylor AJ, Ferro F, Britz HM, Hallgrimsson B, et al. Stem cell-derived endochondral cartilage stimulates bone healing by tissue transformation. J Bone Miner Res. 2014;29:1269–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol. 2015;11:45–54.

    Article  PubMed  Google Scholar 

  15. Lopas LA, Belkin NS, Mutyaba PL, Gray CF, Hankenson KD, Ahn J. Fracture in geriatric mice show decreased callus expansion and bone volume. Clin Orthop Relat Res. 2014;472:3523–32.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Meyer RA, Tsahakis PJ, Martin DF, Banks DM, Harrow ME, Kiebzak GM. Age and ovariectomy impair both the normalization of mechanical properties and the accretion of mineral by the fracture callus in rats. J Orthop Res. 2001;19:428–35.

    Article  PubMed  Google Scholar 

  17. Bak B, Andreassen TT. The effect of aging on fracture healing in the rat. Calcif Tissue Int. 1989;45:292–7.

    Article  CAS  PubMed  Google Scholar 

  18. Bergman RJ, et al. Age-related changes in osteogenic stem cells in mice. J Bone Miner Res. 1996;11:568–77.

    Article  CAS  PubMed  Google Scholar 

  19. Gruber R, Koch H, Doll BA, Tegtmeier F, Einhorn TA, Hollinger JO. Fracture healing in the elderly patient. Exp Gerontol. 2006;41:1080–93.

    Article  PubMed  Google Scholar 

  20. Baxter M, et al. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells. 2004;22:675–82.

    Article  CAS  PubMed  Google Scholar 

  21. Nakahara H, Goldberg VM, Caplan AI. Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. J Orthop Res. 1991;9:465–76.

    Article  CAS  PubMed  Google Scholar 

  22. O'Driscoll SW, Saris DB, Ito Y, Fitzimmons JS. The chondrogenic potential of periosteum decreases with age. J Orthop Res. 2001;19:95–103.

    Article  PubMed  Google Scholar 

  23. Ferretti C, Lucarini G, Andreoni C, Salvolini E, Bianchi N, Vozzi G, et al. Human periosteal derived stem cell potential: the impact of age. Stem Cell Rev. 2015;11:487–500.

    Article  CAS  PubMed  Google Scholar 

  24. Lu C, Miclau T, Hu D, Hansen E, Tsui K, Puttlitz C, et al. Cellular basis for age-related changes in fracture repair. J Orthop Res. 2005;23:1300–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Abou-Khalil R, et al. Role of muscle stem cells during skeletal regeneration. Stem Cells. 2015;33:1501–11.

    Article  CAS  PubMed  Google Scholar 

  26. Brack AS, Muñoz-Cánoves P. The ins and outs of muscle stem cell aging. Skelet Muscle. 2016;6:1.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Marecic O, Tevlin R, McArdle A, et al. Identification and characterization of an injury-induced skeletal progenitor. Proc Natl Acad Sci U S A. 2015;112:9920–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tevlin R, Walmsley GG, Marecic O, Hu MS, Wan DC, Longaker MT. Stem and progenitor cells: advancing bone tissue engineering. Drug Deliv Transl Res. 2016;6:159–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone. 2003;33:919–26.

    Article  PubMed  Google Scholar 

  30. Sebastian S, Andrew S, Alexandra S. Aging of mesenchymal stem cells. Ageing Res Rev. 2006;5:91–116.

    Article  Google Scholar 

  31. Ode A, Duda GN, Geissler S, Pauly S, Ode JE, Perka C, et al. Interaction of age and mechanical stability on bone defect healing: an early transcriptional analysis of fracture hematoma in rat. PLoS One. 2014;9:e106462.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Meyer RA, Meyer MH, Tenholder M, Wondracek S, Wasserman R, et al. Gene expression in older rats with delayed union of femoral fractures. J Bone Joint Surg Am. 2003;85:1243–54.

    Article  PubMed  Google Scholar 

  33. Desai BJ, Meyer MH, Porter S, Kellam JF, Meyer RA Jr. The effect of age on gene expression in adult and juvenile rats following femoral fracture. J Orthop Trauma. 2003;17:689–98.

    Article  PubMed  Google Scholar 

  34. Gerstenfeld LC, Cho TJ, Kon T, Aizawa T, Cruceta J, Graves BD, et al. Impaired intramembranous bone formation during bone repair in the absence of tumor necrosis factor-alpha signaling. Cells Tissues Organs. 2001;169:285–94.

    Article  CAS  PubMed  Google Scholar 

  35. Schmidt-Bleek K, Schell H, Schulz N, Hoff P, Perka C, Buttgereit F, et al. Inflammatory phase of bone healing initiates the regenerative healing cascade. Cell Tissue Res. 2012;347:567–73.

    Article  CAS  PubMed  Google Scholar 

  36. Thomas MV, Puleo DA. Infection, inflammation, and bone regeneration: a paradoxical relationship. J Dent Res. 2011;90:1052–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dishowitz MI, Mutyaba PL, Takacs JD, Barr AM, Engiles JB, Ahn J, et al. Systemic inhibition of canonical notch signaling results in sustained callus inflammation and alters multiple phases of fracture healing. PLoS One. 2013;8:e68726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lim JC, Ko KI, Mattos M, Fang M, Zhang C, Feinberg D, et al. TNFα contributes to diabetes impaired angiogenesis in fracture healing. Bone. 2017;99:26–38.

    Article  CAS  PubMed  Google Scholar 

  39. Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al. Inflamm-aging: an evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54.

    Article  CAS  PubMed  Google Scholar 

  40. Giunta B, Fernandez F, Nikolic WV, Obregon D, Rrapo E, Town T, et al. Inflammaging as a prodrome to Alzheimer’s disease. J Neuroinflammation. 2008;5:51.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Boren E, Gershwin ME. Inflamm-aging: autoimmunity, and the immune-risk phenotype. Autoimmun Rev. 2004;3:401–6.

    Article  CAS  PubMed  Google Scholar 

  42. Lencel P, Magne D. Inflammaging: the driving force in osteoporosis? Med Hypotheses. 2011;76:317–21.

    Article  CAS  PubMed  Google Scholar 

  43. • Xia S, Zhang X, Zheng S, Khanabdali R, Kalionis B, Wu J, et al. An update on inflamm-aging: mechanisms, prevention, and treatment. J Immunol Res. 2016;2016:8426874. This is an updated and an in-depth review that covers the breadth of the inflamm-aging field.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nathan C, Ding A. Nonresolving inflammation. Cell. 2010;140:871–82.

    Article  CAS  PubMed  Google Scholar 

  45. Gruver A, Hudson L, Sempowski G. Immunosenescence of ageing. J Pathol. 2007;211:144–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Steinmann GG. Changes in the human thymus during aging. Curr Top Pathol. 1986;75:43–88.

    Article  CAS  PubMed  Google Scholar 

  47. Compston JE. Bone marrow and bone: a functional unit. J Endocrinol. 2002;173:387–94.

    Article  CAS  PubMed  Google Scholar 

  48. Haynes BF, Markert ML, Sempowski GD, Patel DD, Hale LP. The role of the thymus in immune reconstitution in aging, bone marrow transplantation, and HIV-1 infection. Ann Rev Immunol. 2000;18:529–60.

    Article  CAS  Google Scholar 

  49. Xing Z, Lu C, Hu D, Yu YY, Wang X, Colnot C, et al. Multiple roles for CCR2 during fracture healing. Dis Model Mech. 2010;3:451–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Melton DW, Roberts AC, Wang H, Sarwar Z, Wetzel MD, Wells JT, et al. Absence of CCR2 results in an inflammaging environment in young mice with age-independent impairments in muscle regeneration. J Leukoc Biol. 2016;100:1011–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xing Z, Lu C, Hu D, Miclau T 3rd, Marcucio RS. Rejuvenation of the inflammatory system stimulates fracture repair in aged mice. J Orthop Res. 2010;28:1000–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. • Baht GS, Silkstone D, Vi L, Nadesan P, Amani Y, Whetstone H, et al. Exposure to a youthful circulation rejuvenates bone repair through modulation of β-catenin. Nat Commun. 2015;6:7131. This study demonstrated the significance of hematopoietic cells on fracture healing and the ability to improve healing in old mice with exposure to young hematopoietic cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;25:445–55.

    Article  Google Scholar 

  54. Ferrante CJ, Leibovich SJ. Regulation of macrophage polarization and wound healing. Adv Wound Care. 2012;1:10–6.

    Article  Google Scholar 

  55. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32:593.

    Article  CAS  PubMed  Google Scholar 

  56. Sebastian C, Herrero C, Serra M, Lloberas J, Blasco MA, Celada A. Telomere shortening and oxidative stress in aged macrophages results in impaired STAT5a phosphorylation. J Immunol. 2009;183:2356–64.

    Article  CAS  PubMed  Google Scholar 

  57. Ramanathan R, Kohli A, Ingaramo MC, Jain A, Leng SX, Punjabi NM, et al. Serum chitotriosidase, a putative marker of chronically activated macrophages, increases with normal aging. J Gerontol A Biol Sci Med Sci. 2013;68:1303–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. • Duscher D, Rennert RC, Januszyk M, Anghel E, Maan ZN, Whittam AJ, et al. Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells. Sci Rep. 2014;4:7144. This paper thoroughly showed age-related disruption of MSC function specifically related to a compromise of angiogenesis in wound healing, via in vitro, in vivo, and single-cell transcriptional analysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Slade Shantz JA, YY Y, Andres W, Miclau T, Marcucio R. Modulation of macrophage activity during fracture repair has differential effects in young adult and elderly mice. J Orthop Trauma. 2014;28:S10–4.

    Article  PubMed  PubMed Central  Google Scholar 

  60. • Chang MK, Raggatt LJ, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, et al. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol. 2008;181:1232–44. This study was the first to demonstrate a resident tissue macrophage population, osteomacs that are involved in bone homeostasis and regulate osteoblast function.

    Article  CAS  PubMed  Google Scholar 

  61. Alexander KA, Chang MK, Maylin ER, Kohler T, Müller R, Wu AC, et al. Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res. 2011;26:1517–32.

    Article  CAS  PubMed  Google Scholar 

  62. Ono T, Takayanagi H. Osteoimmunology in bone fracture healing. Curr Osteoporos Rep. 2017;15:367–75.

    Article  PubMed  Google Scholar 

  63. Könnecke I, Serra A, El Khassawna T, et al. T and B cells participate in bone repair by infiltrating the fracture callus in a two-wave fashion. Bone. 2014;64:155–65.

    Article  PubMed  Google Scholar 

  64. Sun G, Wang Y, Ti Y, Wang J, Zhao J, Qian H. Regulatory B cell is critical in bone union process through suppressing proinflammatory cytokines and stimulating Foxp3 in Treg cells. Clin Exp Pharmacol Physiol. 2017;44:455–62.

    Article  CAS  PubMed  Google Scholar 

  65. Al-Sebaei MO, Daukss DM, Belkina AC, et al. Role of Fas and Treg cells in fracture healing as characterized in the Fas-deficient (lpr) mouse model of lupus. J Bone Miner Res. 2014;29:1478–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nam D, Mau E, Wang Y, et al. T-lymphocytes enable osteoblast maturation via IL-17F during the early phase of fracture repair. PLoS One. 2012;7:e40044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Prockop DJ, Oh JY. Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Ther. 2012;20:14–20.

    Article  CAS  PubMed  Google Scholar 

  68. Caplan A, Correa D. The MSC: an injury drugstore. Cell Stem Cell. 2011;9:11–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Caplan A, Dennis J. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98:1076–84.

    Article  CAS  PubMed  Google Scholar 

  70. Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood. 2007;110:3499–506.

    Article  CAS  PubMed  Google Scholar 

  71. Kim J, Hematti P. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol. 2009;37:1445–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shabbir A, Zisa D, Suzuki G, Lee T. Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: a noninvasive therapeutic regimen. Am J Physiol Heart Circ Physiol. 2009;296:1888–97.

    Article  Google Scholar 

  73. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8:726–32.

    Article  CAS  PubMed  Google Scholar 

  74. Le Blanc K, Rasmusson I, Sundberg B, Götherström C, Hassan M, Uzunel M, et al. Treatment of severe acute graft versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004;363:1439–41.

    Article  PubMed  Google Scholar 

  75. Tögel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol. 2005;289:F31–42.

    Article  PubMed  Google Scholar 

  76. Colnot C, Lu C, Hu D, Helms JA. Distinguishing the contributions of the perichondrium, cartilage, and vascular endothelium to skeletal development. Dev Biol. 2004;269:55–69.

    Article  CAS  PubMed  Google Scholar 

  77. Lu C, Hansen E, Sapozhnikova A, Hu D, Miclau T, Marcucio RS. Effect of age on vascularization during fracture repair. J Orthop Res. 2008;26:1384–9.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Jacobsen KA, et al. Bone formation during distraction osteogenesis is dependent on both VEGFR1 and VEGFR2 signaling. J Bone Miner Res. 2008;23:596–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Prisby RD, Ramsey MW, Behnke BJ, Dominguez JM 2nd, Donato AJ, Allen MR, et al. Aging reduces skeletal blood flow, endothelium-dependent vasodilation, and NO bioavailability in rats. J Bone Miner Res. 2007;22:1280–8.

    Article  CAS  PubMed  Google Scholar 

  80. Prisby RD. Bone marrow blood vessel ossification and “microvascular dead space” in rat and human long bone. Bone. 2014;64:195–203.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Frenkel-Denkberg G, Gershon D, Levy AP. The function of hypoxia-inducible factor 1 (HIF-1) is impaired in senescent mice. FEBS Lett. 1999;462:341–4.

    Article  CAS  PubMed  Google Scholar 

  82. Wagatsuma A. Effect of aging on expression of angiogenesis-related factors in mouse skeletal muscle. Exp Gerontol. 2006;41:49–54.

    Article  CAS  PubMed  Google Scholar 

  83. Kosaki N, et al. Impaired bone fracture healing in matrix metalloproteinase-13 deficient mice. Biochem Biophys Res Commun. 2007;354:846–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Marcucio.

Ethics declarations

Conflict of Interest

Daniel Clark, Mary Nakamura, and Ralph Marcucio declare no conflict of interest. This work was funded by NIH/NIA R01AG046282.

Theordore Miclau reports grants and personal fees from the Foundation for Orthopedic Trauma, grants from National Institutes of Health and Baxter, and personal fees from Depuy-Synthes, Acelity, Surrozen, and Arquos outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Orthopedic Management of Fractures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, D., Nakamura, M., Miclau, T. et al. Effects of Aging on Fracture Healing. Curr Osteoporos Rep 15, 601–608 (2017). https://doi.org/10.1007/s11914-017-0413-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-017-0413-9

Keywords

Navigation